
SmartAds: Bringing Contextual Ads to Mobile Apps

Suman Nath
Microsoft Research

sumann@microsoft.com

Felix Xiaozhu Lin
∗

Rice University
xzl@rice.edu

Lenin Ravindranath
Microsoft Research

lenin@csail.mit.edu

Jitendra Padhye
Microsoft Research

padhye@microsoft.com

ABSTRACT
A recent study showed that while US consumers spent 30%
more time on mobile apps than on traditional web, advertis-
ers spent 1600% less money on mobile ads. One key reason
is that unlike most web ad providers, today’s mobile ads are
not contextual—they do not take into account the content of
the page they are displayed on. Thus, most mobile ads are
irrelevant to what the user is interested in. For example, it
is not uncommon to see gambling ads being displayed in a
Bible app. This irrelevance results in low clickthrough rates,
and hence advertisers shy away from the mobile platform.

Using data from top 1200 apps in Windows Phone market-
place, and a one-week trace of ad keywords from Microsoft’s
ad network, we show that content displayed by mobile apps
is a potential goldmine of keywords that advertisers are in-
terested in.

However, unlike web pages, which can be crawled and in-
dexed offline for contextual advertising, content shown on
mobile apps is often either generated dynamically, or is em-
bedded in the apps themselves; and hence cannot be crawled.
The only solution is to scrape the content at runtime, extract
keywords and fetch contextually relevant ads. The challenge
is to do this without excessive overhead and without violat-
ing user privacy. In this paper, we describe a system called
SmartAds to address this challenge.

We have built a prototype of SmartAds for Windows Phone
apps. In a large user study with over 5000 ad impressions,
we found that SmartAds nearly doubles the relevance score,
while consuming minimal additional resources and preserv-
ing user privacy.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Communica-
tions Applications

∗Work done while at Microsoft Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiSys’13, June 25–28, 2013, Taipei, Taiwan
Copyright 2013 ACM 978-1-4503-1672-9/13/06 ...$15.00.

General Terms
Design, Experimentation, Performance

Keywords
Mobile, Apps, Contextual, Advertisement

1. INTRODUCTION
Recently, an interesting study pointed out that advertis-

ing market shares of dominant media such as TV, radio,
and Web are proportional to the average number of minutes
consumers spend on the media per day [13].

The mobile market is one prominent exception to this rule.
In 2011, US consumers spent 1.3× more time within mobile
apps alone than on the Web (through desktop or mobile
browsers). In 2012, the gap was 1.8× and it is expected
to grow in coming years. However, the mobile advertising
market today is very small compared to TV, radio, and Web
advertising. In 2011, advertisers spent less than 1% of their
overall advertising budget for mobile advertising; in con-
trast, they spent 16% for Web advertising [13].

This striking gap between the opportunity and the real-
ity of mobile advertising has been particularly damaging for
companies such as Facebook and Google that derive bulk of
their revenues from ads and whose services can be accessed
from mobile apps as well. It also impacts amateur app de-
velopers, many of whom rely solely on advertising revenue
from ads shown in their apps.

One key reason behind this gap is that unlike traditional
web ads, today’s mobile ads are mostly irrelevant. The screen
capture in the left of Figure 1 starkly illustrates this. With
such irrelevant ads being shown, today’s mobile advertising
is justly derided as taking a “spray and pray” [25] approach.
It should come as no surprise that this approach does not
yield expected revenue. In order to fully exploit the po-
tential of mobile advertising, we must strive to show more
relevant ads to the consumers.

For traditional web, the relevancy problem is addressed in
part, by contextual advertising1, wherein the ads displayed
on the page are based on the content of the page. For ex-
ample, when a user visits an astronomy blog, the contextual
advertising network shows him an ad on a telescope. Con-
textual advertising was pioneered by Google AdSense [3].

1Contextual advertising is different from context-aware ad-
vertising where ads are shown depending on the user’s phys-
ical context such as location. These two can be combined,
but in this paper we focus on contextual advertising only.

The crucial fact that enables contextual advertising is that
web pages can be crawled by a bot and indexed offline. We
will describe this process in more detail in §2.

Can we use the same approach to deliver relevant ads
within mobile apps? Unfortunately, this is not straightfor-
ward. The fundamental reason is that unlike a web page, the
content shown by a mobile app cannot be easily crawled and
indexed. For example, certain news outlets provide mobile-
only content, which is not available via standard web inter-
face. Other content is embedded within the mobile app itself
(e.g. large collections of reference material). This makes it
difficult, if not impossible, to show contextual ads in mobile
apps. We will describe this in more detail in §2.

Some adhoc solutions for providing contextual mobile ads
have been tried. For example, some ad systems try to glean
contextual information from app metadata such as the name
of the app and the category. We will discuss these solutions
in more detail later in the paper. However, our study (§3)
of over 1200 top apps from Windows Phone marketplace
unambiguously shows that these adhoc measures are not
sufficient.

What is needed is a system that can extract ad keywords
from content displayed by mobile apps at runtime, and fetch
relevant ads based on those keywords. Furthermore, this
task must be accomplished with minimal overhead (mem-
ory, network bandwidth etc.) and without violating user’s
privacy.

To fulfill this need, we have built SmartAds. SmartAds
dynamically scrapes page contents as a user uses an app,
extracts relevant ad keywords and fetches and displays rel-
evant ads. SmartAds architecture (§4) strikes the right bal-
ance between utility (how relevant ads are), efficiency (mem-
ory, network, battery and computation overhead), and user
privacy. SmartAds achieves this with a novel client-server
based keyword extraction technique, with various systems
parameters carefully chosen based on a 1-week long trace of
bidding keywords on Microsoft’s ad network.

SmartAds consists of a client library that the developer
includes in the app, and a server that the library commu-
nicates with. At runtime, the client and the server work
together to extract keywords from the content being seen
by the user. The server then fetches relevant ads from a
third-party ad provider and sends it to the client library.
The client library is responsible for displaying the ad.

SmartAds currently focuses on contextual advertising only.
We note that there are various other techniques for deliver-
ing relevant ads. For example, physical context-aware ad-
vertising (such as AdNext [19] and CAMEO [18]) delivers
ads based on users’ locations, activities, and other physical
contexts. Behavioral targeting [33] (such as Yahoo! Smart
Ads [31]) delivers ads to targeted users based on informa-
tion collected on each individual user’s past web usage his-
tory. Contextual targeting of SmartAds is complimentary
to, and can be combined with, these other types of target-
ing. Relative effectiveness of specific targeting techniques
and their combinations within mobile apps are topics of fu-
ture research.

We have built a prototype of the SmartAds system for
Windows Phone apps. Using this prototype, and a large-
scale user study, we show (§5) that SmartAds more than
doubles the relevance score of mobile advertisements. We
also show that the user privacy is not violated, and the re-

Figure 1: Left: Irrelevant mobile ad. The mobile
app shows a list of nearby restaurants, while the ad
(the box at the bottom) is about real estate agents.
Right: Relevant mobile ad about restaurant coupons
delivered by SmartAds.

source overhead is minimal. An example of a relevant ad
fetched by SmartAds is shown in Figure 1 (right).

In summary, this paper makes the following two contri-
butions. First, using data culled from 1200 top Windows
Phone apps, we demonstrate the need for a online, contex-
tual mobile advertising system. We believe that this is the
first study of its kind. Second, we design, build and evalu-
ate SmartAds, a contextual mobile advertising system that
strikes the right balance between utility, efficiency and pri-
vacy. To best of our knowledge, this is the first such system.

The rest of the paper is organized as follows. We sur-
vey the state of the art in web contextual advertising in
Section 2. In Section 3, we characterize contents of mobile
apps based on data culled from 1200 top Windows Phone
apps. We describe SmartAds design and implementation in
Section 4 and evaluate it in Section 5. We discuss various
extensions of SmartAds in Section 6, discuss related work in
Section 7, and conclude in Section 8.

2. BACKGROUND
In this section, we discuss the state of the art in web

contextual advertising, and contrast it with the state of the
art in mobile advertising.

2.1 Contextual Advertising
Contextual advertising is a form of targeted advertising

for ads displayed on websites or other media, such as con-
tent displayed in mobile devices. The ads themselves are
selected and served by automated systems based on the con-
tent displayed to the user. For example, if a user visits an
astronomy blog and sees an ad on a telescope, that’s con-
textual advertising.

We stress that the web advertising community uses the
word context in a narrow sense. In the ad community,
context typically implies only the content displayed on the
page. The ad providers typically take many signals (e.g.
location, prior history) besides the page content into account
while selecting the ad, but the term contextual advertising

refers specifically to the idea of taking page content into
account.

Contextual advertising for the web was pioneered by Google
AdSense [3]. Many other ad providers such as Yahoo! Pub-
lisher Network [32], Microsoft AdCenter [21] and Advertis-
ing.com [4] followed in Google’s footsteps. These advertis-
ing networks typically work by providing webmasters with
JavaScript code that, when inserted into web pages, displays
relevant ads from the ad network’s ad inventory. The core
task of matching ads to web pages consists of the following
steps.

Offline ad labeling. Ads in ad network’s inventory are
labeled with keywords, called bidding keywords, which are
provided by advertisers.

Offline keyword extraction. Ad network employs a bot
(e.g., Google’s MediaBot) that crawls web pages and uses
machine learning algorithms (such as KEX [34]) to extract
prominent keywords and concepts in them. Note that the
bot can parse dynamically rendered web pages as well, as
long as it does not require human input, such as solving
Captchas.

Online web page to ad matching. When a user vis-
its a website, the ad network selects an available ad whose
bidding keywords best match the keywords/concepts in the
web page.

Contextual advertising has been very successful on the
web. Because the ads are more targeted, users are more
likely to click on them, thus generating revenue for the owner
of the website and the ad network.

2.2 Mobile Ads
Many mobile app developers use mobile advertisements

within their apps as their only source of revenue. More than
50% of the apps in the major mobile app stores show ads [14].

To embed ads in an app, the app developer typically regis-
ters with a third-party mobile ad network such as AdMob [1],
iAd [16], Microsoft Mobile Advertising [24] etc. The ad net-
works supply the developer with an ad control (i.e. library
with some visual elements embedded within). The devel-
oper includes this ad control in his app, and assigns it some
screen “real estate”. When the app runs, the ad control is
loaded, and it fetches ads from the ad network and displays
it to the user.

Different ad networks use different signals to serve rele-
vant ads. One of the main signals that mobile ad networks
use today is the app metadata [24]. As part of the registra-
tion process, most ad networks ask the developer to provide
metadata information about the app (for e.g. category of
the app, link to the app store description etc.). This allows
the ad network to serve ads related to the app metadata.

Ad networks also receive dynamic signals sent by the ad
control every time it fetches a new ad. Depending on the
privacy policies and the security architecture of the plat-
form, these signals can include the location, user identity,
etc. Note that unlike JavaScript embedded in the browsers,
the ad controls are integral parts of the application, and
have access to the all the APIs provided by the platform.

Our focus in this paper is contextual advertising, where
the signal is the content of the app page that the user is
viewing. We are not aware of any ad control that provides
such contextual advertising for mobile apps.

This is because building contextual advertising systems
for mobile apps is quite challenging. Unlike web pages, con-
tent displayed by mobile apps cannot be crawled and in-
dexed by a bot in an offline manner, and hence existing
contextual ad systems cannot perform the offline keyword
extraction phase mentioned before. While some mobile apps
fetch web content that is crawlable by bots (e.g. apps that
fetch and display Wikipedia content), the apps often trans-
form this content in a variety of ways, sometimes combining
content from multiple sources.

For example, a news aggregator app, such as News 360,
uses web API to pull news items from several web services
and displays it. Many of these web services do not have
any traditional web front-end that a web bot can discover
and crawl. Furthermore, the content fetched from the web
is modified before being shown to the user. Other apps have
sizable amounts of content embedded in them (e.g. reference
data or large religious texts).

Thus, the only surefire way of providing contextual ads
to a mobile app is to parse the content in an online manner
(i.e. as it is displayed), and to extract keywords. However,
this is a challenging task for two reasons. First, the mo-
bile platform has limited resources. Dynamically scraping
the displayed content, extracting keywords and sending it
through the network, without incurring unacceptable over-
head is a non-trivial task. Second, sending the content of
the page to the ad network can seriously compromise user
privacy.

Note that our goal is related to recently proposed tech-
niques for “just-in-time” contextual advertising in dynamic
web pages [5, 20]. These techniques aim to deliver relevant
ads to dynamic web pages based on useful signals extracted
from them during runtime. In general, these techniques rely
on various properties of web pages and are not directly ap-
plicable for mobile apps. For example, [5] uses page URL as
well as referrer URL, which do not exist for mobile apps. It
also sends short excerpts of the page to backend server, and
hence violates privacy. [20] uses previously recorded traffic
to the page that, again, does not generally exist for mobile
apps. We therefore seek for alternative techniques that work
for mobile apps.

We have built SmartAds to address the aforementioned
challenges for mobile apps. Before we explain the design
of SmartAds, we first characterize the content of existing
mobile apps to motivate the need to deliver ads based on
the app page content.

3. CHARACTERIZATION OF MOBILE APPS
Like websites, mobile apps typically display content in dif-

ferent screens (App Pages) that users can navigate between.
In most platforms, only one app page is displayed to user
at a time. Each of these app pages can contain different
set of UI controls displaying different content. We will call
the content displayed by an app page as Page Data. In Fig-
ure 1, page data consists of a list of restaurant names and
their addresses.

An online system to extract keywords from page data is
needed only if a significant fraction of mobile apps possess
the following three characteristics.

First, the page data displayed by the app should be a rich
source of ad keywords. If it turns out that most apps display
content that do not contain keywords that advertisers bid
on, there is no need for our system.

Instrumented

Phone
Monkey

Phone
Emulator

Interactions

Page Data
Deploy & Run

Instrument

App

App

Figure 2: Schematics of page data logging

Second, the page data should provide significantly more
keywords than the metadata about the app. As we described
in §2.2, many ad providers today take metadata into account
while selecting ads to display. Page data needs to do sub-
stantially better.

Third, the page data should change significantly over a
period of time - i.e. between different invocations of the
same app. Otherwise, one could build a system that runs
the app in an emulator and extract the keywords (essentially,
an offline system).

Consider, for example, the Around Me app that allows a
user to search for local business around his location. If a
user uses the app for finding local restaurants, he should
be shown restaurant related ads (based on extracted key-
word restaurant), but if he uses it for searching for nearby
parking lots, he should be shown parking related ads. In
other words, as the page data can change over time and lo-
cation, offline extraction is not sufficient. Another example
is a news aggregator app, where the content always changes
with time.

To verify whether these conditions hold true for a signifi-
cant fraction of mobile apps, we collected and analyzed page
data from a large number of apps from the Windows Phone
marketplace, as follows.

3.1 Methodology
To capture page data from a large number of apps in a

scalable manner, we developed a UI automation tool called
PhoneMonkey. The PhoneMonkey can emulate various user
interactions (touch, swipe etc.) to navigate through various
pages of the app. To capture the page contents, we leverage
the binary instrumentation framework described in [28]. We
instrument the app binary to insert custom logging code that
logs the contents of each page as it is rendered. We then load
the instrumented app in a phone emulator (e.g., Windows
Phone Emulator for running Windows Phone apps) and use
the PhoneMonkey to emulate various user interactions (e.g.,
by clicking a button, by selecting an item in a drop-down list
box, etc.). As various app pages are rendered, their contents
are logged, which we retrieve for later analysis. The overall
architecture is shown in Figure 2.

Apps. Our binary instrumentation framework is designed
for Silverlight [27] apps, which constitute a vast majority
of the apps in the Windows Phone marketplace today. We
focus on top 1200 Silverlight apps in the Windows Phone
marketplace that do not require username and password for
an external service (e.g. the Facebook app). We run each
of these 1200 app 30 times with the PhoneMonkey. In each
run, the PhoneMonkey starts the app, selects a random UI

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 50 100 150 200 250 300 350

%
 A

p
p

s
(C

D
F)

Ad Keywords

Figure 3: CDF of ad keyword counts extracted from
page data. Page data of half the apps contain more
than 20 ad keywords that could be targeted with
contextual ads.

navigational control (such as a button) in the current page,
acts on it to navigate to the next app page, and repeats
the process until it reaches a page without any UI control
or until it goes outside the app (e.g., a web page). We call
each run an app session. Each session represents a random
execution path through the app. For each session we vary
the location and other sensor inputs fed to the emulator.

Keyword Extraction. Our logging instrumentation cap-
tures the complete contents of all pages rendered during each
session. For advertising purpose, we need to extract a small
number of keywords that are prominent in these pages. Ads
for these pages will be chosen based on these keywords. Key-
word extraction from a webpage is a well-studied area. We
use a modified version of the well-known KEX [34] keyword
extractor2 that was originally designed for webpages. KEX
uses document features (such as where in the page a word
appears, whether it is bolded) and some global information
(how many advertisers are interested in the word) to assign
each word in the document a weight. We will discuss KEX in
more detail in Section 4. For the purpose of this section we
treat KEX as a blackbox. The blackbox takes in the page
data and a one week trace of bidding keywords from Mi-
crosoft’s advertising network collected during the first week
of July 2012, and assigns each word on the page a weight
between 0 and 1 that indicates how “useful” the word is as
keyword to base the ad upon. For example, the words “is”
and “zebra” may both get a low score: the former because
it is too common, while the latter because no one is bid-
ding on it. On the other hand, the word “pipe” may get
higher weight because a number of plumbing business have
bid upon it.

For the results described below, we consider all words with
score higher than 0.1. Using other thresholds changes the
absolute numbers, but our conclusions will still hold.

3.2 Results
Page data is a good source of ad keywords. Figure 3
shows the CDF of ad keywords extracted from page data of
various apps after running each app 30 times. As shown,
most apps contain a good number (> 20) of ad keywords
that ad networks can exploit to select contextual ads. This

2For convenience, we use the term KEX to refer to [34];
authors did not use any specific name of their system.

0

10

20

30

40

50

60

70

80

90

100

1

5
1

1
0

1

1
5

1

2
0

1

2
5

1

3
0

1

3
5

1

4
0

1

4
5

1

5
0

1

5
5

1

6
0

1

6
5

1

7
0

1

7
5

1

8
0

1

8
5

1

9
0

1

9
5

1

1
0

0
1

1
0

5
1

1
1

0
1

1
1

5
1

1
2

0
1

A

d
 K

e
yw

o
rd

s

App ID

Metadata + Pagedata Metadata

Figure 4: Number of ad keywords extracted from
page data and metadata. (The y-axis, with a max
value of 317, is clipped at 100 for clarity.) For most
apps, page data contains more ad keywords than
metadata.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 20% 40% 60% 80% 100%

%
 A

p
p

s
(C

D
F)

% Ad Keywords in Metadata

Figure 5: CDF of fraction of ad keywords extracted
from app metadata alone. For > 85% apps, metadata
contains < 50% ad keywords.

demonstrates the unique opportunity of delivering contex-
tual ads based on page data. We stress that this result is a
conservative estimate and the true potential for contextual
ads based on page data is likely to be bigger. This is because
the PhoneMonkey fails to explore certain execution paths of
an app if they require textual inputs (such as a search query)
or are behind app-specific UI control that the PhoneMonkey
does not know how to interact with (such as an image act-
ing as a button). Thus, in hands of human users, the app is
likely to generate more keywords.

Page data yields more keywords than metadata. While
page data may be a rich source of ad keywords, we need to
show that it yields substantially more keywords than app
metadata (such as the name, category and description) –
today’s mobile ad networks already take metadata into ac-
count.

To this end, we separately extract keywords from app
metadata and from page data. Figure 4 shows the number of
keywords we learn from page data and from app metadata of
all 1200 apps. We see that for most apps, page data contains
more ad keywords than app metadata. In Figure 5 we show
CDF of what fraction of total ad keywords extracted from
an app indeed come from metadata alone (i.e., if an app’s
metadata contains 5 keywords and its page data contains 15
additional ad keywords that do not appear in metadata, 25%
of its ad keywords come from metadata). The graph shows

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.2 0.4 0.6 0.8 1

%
 A

p
p

s
(C

D
F)

Avg. Session Similarity

Figure 6: CDF of session similarities of apps. Half
the apps have session similarity < 0.55.

that more than 85% of the apps have more ad keywords in
page data than in metadata. These numbers clearly show
the value of extracting ad keywords from page data.

Page data is dynamic, and requires online keyword
extraction. Our results so far demonstrate that extract-
ing ad keywords from page data can be helpful in selecting
contextual ads for apps. But we need to decide whether
collecting this data at runtime (i.e. online) is necessary.

To understand how important online extraction is, we
measure average session similarity of various apps. To com-
pute session similarity of an app, we generate n = 30 app
sessions of an app, where each session is a random execu-
tion path from the start page of the app. For each session
x, we extract the set Kx of ad keywords in all pages in the
session. For each pair of sessions x and y, we compute their
Jackard similarity Sxy = |Kx ∩ Ky|/|Kx ∪ Ky|, which de-
notes the fraction of keywords common between x and y.
Finally, we compute session similarity of the app as the av-
erage similarities of all session pairs. Note that the value
of session similarity lies within the range [0, 1]. Intuitively,
a small value of average session similarity implies that two
random sessions of the app have diverse set of ad keywords
and hence they should be shown different ads.

Figure 6 shows the CDF of session similarities of various
apps. Median session similarity is 0.55. This means that
half the apps have average session similarity less than 0.55.
For these apps, each session looks significantly different from
other sessions of the same app (with almost half new key-
words compared to the other session). This highlights the
fact that an offline keyword extraction process is unlikely to
work well for all user sessions.

The above result is a conservative one. Recall that for
each app we use n = 30 sessions, which are supposed to be
random samples of execution paths in the app. For some
apps, however, PhoneMonkey explores only a small number
of execution paths. For those apps, many of our sampled
sessions look exactly same or very similar, boosting their
average session similarity values. With a better PhoneMon-
key that can explore more execution paths, app sessions will
exhibit even less similarities, further strengthening our ar-
gument for online keyword extraction.

Note that another important argument behind the need of
online keyword extraction is that a PhoneMonkey may not
be able to explore many important pages inside an app. This
can happen for many reasons: e.g., if a page can be reached
only after some human inputs (e.g., username/password)

Ad Library
(Keyword

extraction)

Ad Server
(Keyword

analysis and
selection)

Ad request

Ad Ad

Keywords

Ad Network
(keywords to
ads matching)

Figure 7: SmartAds Architecture

that the PhoneMonkey cannot emulate, if a page is behind
a custom UI control that the PhoneMonkey does not know
how to interact with, if the app contains a large number
of pages and the PhoneMonkey explores only a fraction of
them due to time constraints, etc. With online extraction,
we can leave navigation within an app to its user, making
sure that we extract keywords from the page the user is
currently consuming.

3.3 Summary
The results in this section show that page data provides

a rich set of ad keywords, and it is a substantially richer
source of ad keywords than the app metadata. Finally, we
also showed that page content of the app varies significantly
between sessions, and thus, online extraction of keywords
from page data is necessary.

4. SmartAds ARCHITECTURE
SmartAds consists of a client-side ad library and an ad

server (Figure 7).
The developer includes the ad client within his app. When

a user uses the app, the ad client periodically extracts promi-
nent keywords from the current app page and requests an
ad from the ad server. The ad server analyzes the keywords
sent by the client and ranks them. It then requests an ad
network for ads matching these keywords. The ad network is
a third-party entity that accepts bids and ads from a variety
of sources (e.g. a plumber may create an ad for his business
and bid on the word “pipe”). The ad network returns any
ads that it may have for the keywords sent by the ad server.
The ad server selects the ad matching the highest-ranked
keyword, and returns it to the client for displaying.

In this section, we focus on how the ad client and the ad
server selects the best keyword to request ads from the ad
network. The process that the ad network uses to pick ads
that match the keywords is outside the scope of this paper.
Our ad server can use any ad network that can return an ad
for a given keyword.

The design of SmartAds is guided by the following con-
cerns:

Utility. SmartAds should be able to extract keywords
that are prominent on the current app page, while relevant
to available mobile ads.

Efficiency. The SmartAds client should have minimal
impact on memory consumption of the app, as well as on its
network, CPU and energy footprint.

Privacy. SmartAds should not violate user’s privacy, e.g.,
by sending sensitive words such as user’s bank account num-
ber from an app page to the ad server.

The core functionality of SmartAds is keyword extraction.
Given an app’s page data, SmartAds extracts prominent
keywords that describe the theme of the app page and can
be matched with available ads. One might consider using ex-
isting keyword extractors, such as the well-known KEX [34],
designed for extracting ad keywords from web pages. They
can offer good utility, but they pose a tradeoff between ef-
ficiency and privacy depending on where the extraction is
done.

Extracting keywords entirely on the client is infeasible, be-
cause good keyword extractors uses some global knowledge
that can be too big to fit on the client’s memory. For ex-
ample, an important component of SmartAds’s keyword ex-
tractor is a dictionary of bidding keywords and their global
popularity among ads. However, the database of all key-
words that advertisers are bidding on can be several hun-
dred MBs (§4.2.2). This database needs to be in the RAM
for fast lookup. Most mobile platforms limit the amount of
RAM the app can consume to avoid memory pressure. For
example, the Windows Phone limits apps to consume only
90MB of RAM at runtime. Android and iOS also impose a
similar restriction.

Running KEX at the server is also problematic. This is
because the client would have to upload the entire content
and layout information of the page, to allow KEX to extract
all the necessary features. This not only wastes communi-
cation bandwidth (average page size, including their layout
information, is several KBs in the 1200 apps we studied),
but can also compromise user privacy, since sensitive infor-
mation such as a user’s name or bank account number, could
be sent to the server.

To address these concerns, SmartAds uses a novel key-
word extraction architecture. In the rest of the section, we
describe various components of the architecture and how
they achieve good utility, efficiency, and privacy.

4.1 Achieving Good Utility
To extract prominent keywords from an app page, we start

with KEX that has been found effective for web pages and
modify it to address efficiency and privacy concern. Given
a page, it produces a ranked list of keywords with scores
between 0 and 1, indicating how useful each keywords is, to
base the ad on.

The core of KEX is a classifier. Given a feature vector
of a word W in document D, it determines the likelihood
score of W being an advertising keyword. More formally, it
predicts an output variable Y given a set of input features
X associated with a word W . Y is 1 if W is a relevant key-
word, and 0 otherwise. The classifier returns the estimated
probability, P (Y = 1|X = x):

P (Y = 1|X = x) =
exp(x · w)

1 + exp(x · w)
(1)

where the vector of weights is w, wi is the weight of input
feature xi.

The original KEX implementation was designed to extract
keywords from web pages. We now describe how we modified
it for SmartAds.

4.1.1 Local features
KEX uses many document features that are specific to

web pages. We exclude features that do not apply to app
pages. For example, KEX assigns higher weight to a word

that appears in the HTML header. This does not apply for
app pages. We retained the following KEX local features
that are applicable to app pages.

• AnywhereCount: The total number of times the word
appears in the page

• NearBeginningCount: The total number of times the
word appears in the beginning of the page. Beginning is
defined as the top 33% of the screen.

• SentenceBeginningCount: The number of times the word
starts a sentence.

• PhraseLengthInWord: Number of words in the phrase.

• PhraseLengthInChar: Number of characters in the phrase.

• MessageLength: The length of the line, in characters,
containing the word.

• Capitalization: Number of times the word is capital-
ized in the page. It indicates whether the word is a
proper noun or an important word.

• Font size: Font size of the word.

In addition, app pages have features that are not found in
HTML pages. For example, based on the data collected in
§3, we found that the UI element (e.g. TextBox) containing
user input is a good indicator of the word’s importance.
Thus, we needed to include the UI element containing a
word to the list of document features that KEX considers in
its ranking function. However, we used a somewhat ad hoc
approach to determine the weights of various UI controls to
be used in KEX’s model: we mapped various UI controls to
existing KEX features. For example, if a word appeared in a
user input TextBox, it is considered to be Capitalized and
NearBeginning.

In principle, one should train KEX’s machine learning
model with a large corpus of labeled page data to determine
the weight of various UI elements. However, innovating on
core machine learning techniques for keyword extraction is
outside the scope of this paper; our aim in this paper is to
build an end-to-end system for delivering contextual ads to
mobile apps while striking a right balance between relevance,
efficiency and privacy. We therefore leave such training as
future work. Once such weights are learned from training
data, they can be readily incorporated into SmartAds to
further improve its relevance.

4.1.2 Global knowledge
KEX is designed to use a large English dictionary that as-

cribes relative importance to words, based on how common
they are in the English language. For example, words such
as “the” are assigned a lower weight.

In our setting, we instead use the knowledge about how
often advertisers bid on a keyword. To learn this, we use
a 1-week bidding keyword trace collected from Microsoft’s
Bing ad network during the first week of July 2012. As we
show in Section 4.2.2, using a longer trace has negligible
impact. Having this trace, we assign each word a weight
equal to log(1 + frequency), where frequency is how many
times the word appears in the bidding keyword trace. This
reflects the distribution of the keywords advertisers are most
interested in.

Using the above local features and global knowledge, our
modified KEX produces a good set of ad keywords from an
app page (as is evident in our evaluation results in §5). How-
ever, an ad network can have millions of bidding keywords,

making the global knowledge too large to fit in a mobile de-
vice’s memory. Therefore, KEX cannot be run entirely on
the client. On the other hand, running KEX entirely on the
server poses network overhead and privacy concerns. We
now discuss how SmartAds addresses these concerns.

4.2 Achieving Efficiency

4.2.1 Addressing memory overhead
The large memory overhead of keyword extraction comes

from the large global knowledge. To avoid this overhead at
the client side, we split the KEX functionality between the
client and the server such that the global knowledge (and
associated computation) is maintained at the server and the
client does only as much as is possible without the global
knowledge. Observe that the scoring function as shown in
Equation 1, is based on dot products of the feature vector
x and the weight vector w. Dot product is partitionable: it
can be computed partially at the client and partially at the
server. Thus, we partition x into a vector of local features
xl (e.g., AnywhereCount) and a vector of global features xg

(e.g, global knowledge of a keyword), with weight vectors
wl and wg respectively. For each word w in a given page,
the client computes its local score Lw = xl · wl and sends
(w,Lw) to the server.3 The server uses the global knowledge
to compute w’s global score Gw = xg ·wg. Finally, the server
computes the overall score of the word w as Sw = Lw +Gw.
The score Sw is then used in Equation 1 to compute w’s
probability of being an advertising keyword.

4.2.2 Addressing communication overhead
Note however, that uploading all words on the page to the

server is both wasteful, and can potentially violate privacy.
We now describe how we tackle these problems.

Intuitively, the client does not need to send a word if it
does not have any chance of being selected as one of the
extracted keywords at the server. How can the ad client
locally prune unnecessary keywords?

We exploit knowledge about the keywords that advertisers
bid on to achieve such pruning. The client keeps a list of all
bidding keywords and sends a word to the server only if it
is one of the bidding keywords. However, there can be too
many bidding keywords (typically hundreds of millions) to
fit in client’s memory. Moreover, merely checking bidding
keywords is not sufficient; we also need to consider words
that are related to the bidding keywords, further increasing
the memory overhead. (See §6.1 on a discussion on how
SmartAds gets related words).

To address this challenge, we compress the list of bidding
keywords and related keywords using a Bloom filter [6]. A
Bloom filter is a space-efficient probabilistic data structure,
that can be used to test whether an element is a member of
a set. False positive retrieval results are possible, but false
negatives are not. The Bloom filter is constructed by the
server, from its knowledge of bidding keywords, and sent to
the ad client. The ad client uses the Bloom filter to check
whether a candidate word is included in the list of bidding
keywords or not. The client sends a word to the ad server
only if it passes the Bloom filter.

3If the page does not contain enough ad keywords (e.g. a
page with just images), we fall back to ad keywords in pre-
vious app pages in the same session or to ad keywords in
app metadata. We discuss this in detail in (§6.1).

10-10

10-8

10-6

10-4

10-2

1
P

ro
ba

bi
lit

y

Keywords (log10 scale)

Figure 8: PDF of bidding key-
word frequencies in a 1-week long
Bing ad trace

0.1

1

10

102

103

 0 5 10 15 20 25 30

B
F

 S
iz

e
(M

B
)

Log size (days)

Top 100%
Top 90%

Figure 9: Bloom filter size for top
x% and related keywords, for var-
ious trace length

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

C
ov

er
ag

e

Days

Top 100%
Top 90%
Top 50%
Top 10%

Figure 10: Coverage of top x%
and related keywords from 1-week
trace over time

There can be tens of millions of bidding keywords in an
ad network and hence a Bloom filter can be very large if we
include all bidding keywords. Therefore, we use the second
optimization of including only a relatively small number of
bidding keywords that cover most of ads in the ad network.

To see whether the above techniques are feasible, we need
to answer two important questions: (1) what is the memory
footprint of the Bloom filter? (2) how often does the Bloom
filter change? We answer these questions with a 1-week trace
of bidding keywords collected from Microsoft’s ad network
within the first week of July 2012.

Bloom filter size at the client. The size of a Bloom
filter depends on the number of items and false positive rates
of lookups one is willing to tolerate. Simple mathematical
analysis shows that for n items and a false positive rate of
p, the optimal size of a Bloom filter is − n ln p

(ln 2)2
bits [8].

Ideally, we would like to use all bidding keywords. Our
bidding keyword trace shows that this size can be prohibitively
large to fit in a smartphone. Fortunately, there are many
popular bidding keywords each of which appears in labels of
a large number of ads. In particular, frequencies of bidding
keywords follow a power law distribution, as shown by the
pdf of bidding keywords in our one week trace in Figure 8.
(The units on the x-axis are omitted as it is sensitive to
Microsoft’s business.) This implies that a small number of
bidding keywords appear in most of the ads. More precisely,
in the 1-week trace, 2.2% most frequent bidding keywords
can fit in a smartphone’s memory and yet cover 90% of the
ads. We can therefore use this small fraction of bidding
keywords and yet achieve a high coverage of ads.4

Figure 9 shows the size of the Bloom filter maintained at
the client, for various lengths of Bing traces. The size of
the Bloom filter is chosen to be optimal to bound the false
positive rate to < 1%. We show numbers for two cases when
we consider (a) all unique keywords in the trace and (b) only
the most frequent unique keywords covering 90% of the ads.
As shown, the Bloom filter size is small (around 1MB) when
we consider keywords covering 90% of the ads. The graph
also shows that Bloom filter size is not much sensitive to
how long a trace we use.

Dynamics of bidding keywords. A Bloom filter is
not incrementally updatable: even though new items can be
added dynamically, items cannot be deleted5. Therefore, if
the set of bidding keywords that we use for local pruning

4We discuss in Section 6.2 how the remaining 10% ads ac-
tually get served to clients.
5Deletion is supported in counting Bloom filter that has
more memory footprint and therefore we do not use this.

changes dramatically, the client needs to download the en-
tire Bloom filter from the server. For practical reasons, this
should happen rarely.

To see how frequently bidding keywords change, we do
the following experiments with our trace. We first build a
Bloom filter with a base keyword set Sx, which consists of
top keywords covering x% of the ads in a 1-week long trace.
Then, on each subsequent day, we compute what fraction
of ads available on that day on Microsoft’s ad network are
labeled with the keywords in Sx. If there are too much
churns of bidding keywords, the coverage should drop down
quickly. Figure 10 shows the results for various value of x. It
shows that coverage is relatively stable for higher values of
x. For example, starting with keywords covering x = 90% of
the ads, coverage remains higher than 85% even after three
months. This suggests that the Bloom filter at the client
does not need to be updated very often. Bloom filter’s small
size and infrequent update rate make it practical to be used
in our application.

4.3 Achieving Privacy
Privacy and contextual ads are at odds with each other

since for the ad server to select an ad relevant to an app page,
it needs to know the page content. The solution we have
presented so far already provides some form of privacy: the
ad server knows only the ad keywords in the page and nothing
else. Since ad keywords are essentially popular keywords bid
by advertisers, they are likely to be non-sensitive keywords.
This also raises the bar of an adversarial advertiser to exploit
the system: since we pick only popular bidding keywords, an
adversary is unlikely to make a sensitive word into our list
of popular keywords without making a large number of bids
for the same keyword. Finally, the ad server makes the list
of popular keywords public so that a third party can audit
if the list contains any sensitive keywords.

Note that SmartAds does not guarantee absolute privacy,
where no information about the client is disclosed to the
server. In fact, as shown in [15], it is impossible to guarantee
such absolute privacy in a client-server contextual ad system
without sacrificing ad quality or system efficiency. The only
guarantee SmartAds provides is that the ad server does not
know the existence of any word in a user’s app page unless
the word is an ad keyword.

Even achieving this guarantee is not straightforward while
using Bloom filter as it can have false positives. Therefore,
the ad client may occasionally send to the ad server sensitive
words (such as his SSN or a name of a disease) that appear
in an app page but are not ad keywords. This can violate
user’s privacy.

To avoid potential privacy breach, the ad client and the

W1, L1

W2, L2

Wn, Ln

H(W1), L1

H(W2), L2

H(Wn), Ln

H(W1), L1

H(W2), L2

H(Wk), Lk

W1, L1, G1

W2, L2, G2

Wk, Lk, Gk

W1,Score(W1)

W2,Score(W2)

Wk,Score(Wk)

Ad
Inventory

Bloom filter

K1, H(K1), Gk1

…

Kn, H(Kn), Gkn

Keyword DB

Ad
Network

Ads Ads

keyword

Figure 11: Keyword extraction in SmartAds

ad server use a one-way hash function and operate on hash
values of all keywords instead of their plaintexts. The server
builds the Bloom filter of hashvalues of all ad keywords. The
client hashes all candidate keywords on the current page
and sends only the hashvalues if they exist in the Bloom
filter. The server maintains a dictionary of all ad keywords
and their hashvalues; hence it can map a hashvalue to its
plaintext only if it is an ad keyword. The server ignores
all hashvalues that do not appear in its dictionary, without
knowing their plaintexts. In this way, SmartAds achieves
our target privacy goal that the ad server knows plaintexts
of only the words that are popular ad keywords.

4.4 End-to-end workflow in SmartAds
Figure 11 shows the overall operation of the SmartAds

system. It works as follows.

Offline Processing. The ad server maintains a database
containing all ad keywords. For each keyword k, the database
maintains k, a hashvalue H(k) of k, and a global feature
value Gk of K. The value Gk is used by the keyword extrac-
tion algorithm for computing overall ranking of a keyword.
For our KEX-based keyword extractor, Gk is computed as
log(1 + freqk), where freqk is the number of times K is
used to label any ad in the ad inventory. The database is
updated as the ad inventory is updated.

Periodically (e.g., once in every three months) the server
computes a Bloom filter from all the H(k) values in the
keyword database and sends it to mobile phone clients. The
size of the Bloom filter is optimally selected based on the
number of keywords in the keyword database and a target
false positive rate.

Online Processing. The ad client works as follows. After
an app page is loaded, it “scrapes” the current page content
to generate a list of candidate keywords. Typical app pages
are organized as a hierarchy of UI controls (e.g., text box,
images, list box); scraping is done by traversing the hierar-
chy and extracting texts in all UI controls. For each scraped
word W , the client module computes its hash H(W) (using
the same hash function the server uses to generate the key-
word database) and its local feature vector Lw. If H(W)
passes the Bloom filter, the pair (H(W), Lw) is sent to the
server. If a H(W) value does not appear in the server’s key-
word database (i.e., a false positive in the client’s Bloom fil-
ter), it discards the value, without knowing the correspond-
ing word W . Otherwise, it retrieves Gw from the keyword
database and combines it with Lw to compute the overall
score of the word W . Keywords with scores above a thresh-
old are selected as extracted keywords.

Our Implementation. We have implemented SmartAds
system for Windows Phone apps. The ad client is a DLL

that developers can include in an app page programmatically
or by dragging and dropping from Microsoft Visual Studio
control toolbox. We have also implemented a tool that can
insert the ad client into existing apps with binary rewriting
techniques [28]. The ad server runs in Windows Azure. We
use Microsoft Bing’s ad network for retrieving suitable ads
matching a given keyword.

5. RESULTS
In this section, we evaluate the performance of SmartAds.

The most important metric for evaluating the performance
of any ad selection system is the relevance of the ads shown.
As shown in Figure 1, SmartAds can display a more con-
textually relevant ads, compared to other ad controls. Since
relevance is subjective, we quantify relevance of ads shown
by SmartAds via a large user study described in §5.1. The
next important metric is the delay incurred in fetching and
showing the ad. Users of mobile apps typically have short
attention spans [12] and the best time to draw a user’s at-
tention is during or as soon as he moves from one page to
another [17]. So, ads must be fetched and displayed as soon
as possible after the page loads. Our results (§5.2) show that
the SmartAds system is responsive and is able to fetch rele-
vant ads quickly. Finally, in §5.3, we evaluate the impact of
the ad control on the mobile phone, in terms of CPU, mem-
ory, network and battery consumption. If this overhead is
excessive, app developers may not use the ad control. Our
results show that the overhead is minimal.

5.1 Relevance
SmartAds dynamically retrieves ads based on the key-

words extracted from the content of the app page and hence
delivers ads that are contextual and more relevant. We eval-
uate the increase in relevance via a user study.

As a baseline for our comparison, we consider the rele-
vance of the ads delivered by a major ad control for Win-
dows Phone. We refer to the ad control as the baseline ad
control and the ads shown by it as baseline ads. The base-
line ad control uses a number of useful signals such as app
metadata (e.g., app description and category in the market-
place) and user’s location to choose relevant ads.Based on
official documentation, other ad controls use the same or a
subset of signals as the baseline ad control uses: some use
location only, some use location plus metadata, etc. (No
ad control for Windows Phone uses page data for choosing
ads.) Therefore, we believe ads from our baseline ad control
is a reasonable comparison point for our study.

The user study was based on top 353 apps from Windows
Phone marketplace that used the baseline ad control. We
ran these 353 apps using the PhoneMonkey (§3.1). Each
app was run for 10 minutes. As the PhoneMonkey visited
various pages in the application, it captured and logged the
XML used to render the page. Various heuristics were used
to ensure that the XML was captured only after the page
was fully loaded. The contents included the ad displayed
by the baseline ad control. We captured no more than 10
unique pages per app. In total, we captured a total of 2500
unique pages from the 353 apps.

Next, we removed the existing ad (provided by the base-
line ad control) from these pages and ran SmartAds offline
on the page content. SmartAds extracted keywords from the
page and fetched suitable ads for the given keywords from
the Microsoft Bing’s ad network. At this point, for each

page we had an ad served by the baseline ad control and by
the SmartAds ad control.

Then, using this data we generated two different screen-
shots for each page, an original one showing the ad from the
baseline ad control and the other showing the ad obtained
by SmartAds. Hence, in total, we had a database of 5000
app screenshots showing ad either from baseline ad control
or from SmartAds.

The user study was based on these 5000 screenshots. We
created a website where users could indicate how relevant
the ad in the screenshot is to the content of the screenshot.
The user study website is shown in Figure 12. We provided
users with three score levels6 (i) Very relevant (ii) Some-
what relevant and (iii) Not relevant. Users were not told
the source of the ad in the image. After a user labeled an
image, he/she was shown another randomly selected image.

We asked users in a mailing group consisting of 400 people
in our organization to visit the website and label the images.
The responses were completely voluntary and anonymous.
The website was accessible only from our corporate intranet.

In total, we obtained 6230 labels. Each screenshot got at
least one label and a random subset of them got more than
one. There were 3105 labels for baseline ads and 3125 labels
for SmartAds.

The results from the user study are shown in Figure 13.
When the ad was generated by SmartAds, over 75% of the
ads were labeled either “Very relevant” or “Somewhat rele-
vant”. In contrast, only 41% of the ads generated by the
baseline ad control were labeled “Very relevant” or “Some-
what relevant”. This result clearly demonstrates the impor-
tance of using the content of the page while generating the
ad.

From the results we also see that about 25% of the ads gen-
erated by SmartAds were labeled non-relevant. We investi-
gated these pages further and found that the non-relevancy
stems from two major factors. First, there are apps which
display minimal text content in the screen and mostly show
images or controls (for e.g. games). Second, in certain apps,
the keywords on the screen does not match any bidding key-
word i.e. there are no ad providers bidding for content (key-
word) related to the app. In both these cases, SmartAds
falls back to retrieving keywords from the metadata of the
app (See §6.1) which in many cases are not relevant to the
content on the screen.

Note that in practice Windows Phone ads are likely to be
more relevant than our study shows. This is because Mi-
crosoft Ad Control, which is used by > 80% ad supported
apps, uses behavioral and location-based targeting as well.
With behavioral targeting, a user is shown ads relevant to
his search history in Bing (if he is signed in to Bing by using
the same Microsoft ID he uses in his Windows Phone). With
location-based targeting, a user is shown ads on near-by
business. We disabled these targeting in our study (i.e., we
disabled phone’s GPS and the PhoneMonkey did not have
any Bing history) as we wanted to demonstrate benefits of
using page data over metadata in choosing ads. Behavioral
and location-based targeting are orthogonal to contextual
targeting, and they can be combined. We leave studying
the effectiveness of such combined targeting as part of our
future research.

6We experimented with the number of levels in smaller set-
tings, and discovered that three levels struck the right bal-
ance between useful granularity and user irritation.

Figure 12: User Study Website

21%

46%
20%

29%

59%

25%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Microsoft Ads SmartAds

Not Relevant

Somewhat Relevant

Very Relevant

Baseline Ads

Figure 13: Ad relevance results from the user study

5.2 End-to-end performance
Mobile app users are impatient, and in many cases spend

only tens of seconds on each app [12]. Moreover, the best
time to draw a user’s attention is during or as soon as he
moves from one page to another [17]. is not fetched and
displayed sufficiently quickly after a page is loaded, the user
may never notice it. To characterize this end-to-end perfor-
mance, we measure the time to deliver an ad starting from
Page Load. This is the time that elapses between the in-
stance the user navigates to a page, and before he sees the
ad.

To measure the end-to-end performance and overhead,
we inserted SmartAds client into a set of existing apps by
rewriting app binaries [28]. These apps already had the
baseline ad control and binary rewriting simply replaced the
the ad control library with ours. We asked 5 volunteers to
run these apps over a period of 5 days. All users had a
Samsung Focus phone running Windows Phone 7.1. We in-
strumented both the ad client and the ad server to measure
the end-to-end performance and the performance of different
components.

When a page loads, SmartAds scrapes the page, does key-

Average
Component Runtime (ms)
Page Scraping 30
KEX Local 20
KEX Server <1
Ad network query 500

Table 1: Average runtime of various components in
the SmartAds implementation.

word extraction, runs them through the bloom filter and
sends the filtered keywords to the ad server. The ad server
in turn queries the ad provider for a relevant ad and sends
the ad back to the app.

In our deployment, the average end-to-end time to deliver
an ad after the page loads is 650ms. SmartAds performance
is comparable to the performance of other ad controls.

The breakdown of the time consumed by the different
components of the SmartAds system is shown in Table 1.
We see that the keyword extraction at the client and the
server are implemented efficiently and takes only 20ms on
average. Page scraping takes only 30ms on average. Our
biggest bottleneck is the time to query the ad network from
the ad server. This delay is not under our control, although
if we were to deploy SmartAds in production, we could work
with the ad network to reduce this delay.

5.3 Overheads
Our distributed keyword extraction technique significantly

reduces the amount of resources consumed at the mobile de-
vice. In this section, we show the end-to-end performance
of SmartAds and the overhead across various resources in-
cluding compute, memory, network and battery.

CPU Overhead. SmartAds runs asynchronously and
does not affect the performance of the app. Even so, the
CPU overhead is minimal. The combined runtime of page
scraping and local keyword extraction represents the compu-
tation overhead at the mobile device. As seen from Table 1,
this overhead is minimal.

Memory Overhead. As mentioned is Section 4, Smart-
Ads uses a compact bloom filter to check for ad keywords
instead of storing all ad keywords in memory. The size of
our bloom filter is 1MB. To measure the memory overhead of
our ad control, we run apps with and without the ad control
and measure the average peak memory load. Based on our
measurements, SmartAds control consumes around 2.8MB
of memory on an average. This overhead is low compared
to the typical amount of memory consumed by apps today.

Network Overhead. In comparison to existing mobile
ad controls, the extra data that SmartAds control sends are
the keywords and their weights to the ad server. We send
12 bytes of data per keyword (8 bytes for keyword hash and
4 bytes for weight). From our analysis of 1200 apps, we find
that the average number of keywords extracted per page is
7.6. Hence, the average extra bytes sent is 91.

We also measured how much existing ad controls upload
and download each time they fetch ads. The number varies
across ad controls; but on average various ad controls upload
1.5KB and download 5KB of data. Thus, even if SmartAds
functionality are incorporated into existing ad controls, the
additional overhead (< 100 bytes) would be negligible.

Battery Overhead. To measure the battery overhead,
we use a software power meter [22]. We run apps with and
without the ad control through the power meter and mea-
sure the average power consumed. The increase in power
consumed was less than 1% and well within experimental
noise.

5.4 Summary
The results in this section show that the SmartAds sys-

tem delivers relevant ads. Compared to the baseline ad con-
trol, which takes into account only the application descrip-
tion, SmartAds significantly improves relevance score. The
results also show that SmartAds is efficient and consumes
minimal resources.

6. DISCUSSION

6.1 Optimizations
In §4.2, we briefly mentioned two optimizations, without

discussing them in detail. Specifically, we mentioned that we
rely on metadata if the page data does not contain any key-
words. We also mentioned that we augment ad keywords
with related words. We now describe these two optimiza-
tions in more detail.

Addressing lack of text. One problem of extracting ad
keywords from app pages is that some pages do not contain
enough texts and hence keyword extractor do not produce
any advertising keywords. To show relevant ads even on
those pages, we use three levels of keywords. Level 1 key-
words are the ones dynamically learned from the current
page. Level 2 keywords are the ones dynamically learned
from all the pages the user has viewed in the current session.
Additionally, the ad server maintains Level 3 keywords for
each app, learned offline from that app’s metadata. If Level
1 keywords are empty, we fall back to Level 2 keywords. If
both Level 1 and Level 2 keywords are empty, we fall back
to Level 3 keywords to select relevant ads. Intuitively this
means that we always give preference to the current page
to show ads. If current page does not contain any advertis-
ing keywords, we consider all the pages the user has visited
in the current session. Finally we consider app descriptions
and content of all app pages (including the ones the user has
not visited in this session) to extract keywords.

Handling related keywords. Suppose, the set of bidding
keywords contains only one keyword {HDTV} and the current
app page contains the words LED TVs are cool. Clearly, af-
ter filtering based on bidding keywords, the ad client will not
extract any keywords even though it could show an ad for
HDTV on this page because LED TVs and HDTV are related.
Typical keyword extraction tools (including KEX) ignore
such related words. However, we would like to capture such
relations because a typical app page contains small amounts
of texts, and hence capturing related words would give us
opportunities to show more relevant ads. We therefore ex-
tend the set of original bidding keywords with their related
words: {HDTV, LED TV, LCD TV}. We call this extended set of
bidding keywords and their related words as ad keywords.

We use two data sources to find related words. The first
source is a database of related keywords automatically ex-
tracted by analyzing Bing web queries and click logs. The
degree of relationship between two keywords is computed
based on how often Bing users searching for those two key-

words click on the same URL. The second source is a web
service provided by http://veryrelated.com that, given a
keyword, returns a list of related keywords. Based on a
WWW snapshot from Yahoo, it automatically discovers re-
lated words and concepts. The degree of relationship be-
tween two keywords is computed based on how often they
appear in the same web page and how popular they are on
the Internet.

Our experiments show that such keyword expansion is use-
ful. For example, starting with a list of 1.3 million most
frequent bidding keywords, the first and the second source
above expanded the list to 1.96 million and 2.06 keywords
respectively. We also found that around 25% of the key-
words we extracted from app pages are these related key-
words, which means we would have lost the opportunities of
delivering relevant ads had we not considered these related
keywords.

6.2 Dealing with Tail Bidding Keywords
Recall that we have configured SmartAds’s client-side Bloom

filter to include a small number (≈ 2%) of popular bidding
keywords that cover around 90% of the ads. The reader
might worry that ads with bidding keywords in the tail of
the distribution (i.e., remaining 10% of the ads) may never
get served to users.

In practice, however, contextual signal (i.e., ad keywords
extracted from current page) is only one of many signals
used by a real ad system; in many occasions the ad sys-
tem would use other signals such as a user’s location (for
context-aware targeting), his web or app usage history (for
behavioral targeting), etc. The remaining 10% of the ads
can be served in these situations, by matching their key-
words with a user’s search history for example. Even if the
ad server decides to use the contextual signal to serve ad, it
can occasionally serve these 10% tail ads in multiple ways:
(1) by serving them when their keywords are semantically
related to any keyword in the Bloom filter, (2) by prioritizing
them when the current page does not contain any important
ad keywords, or (3) by occasionally serving them even if the
contextual signals do not match them.

Our design of SmartAds exposes a tradeoff between ad
coverage and memory/network overhead, and the ad system
can operate at a desirable sweet spot by tuning the size of the
Bloom filter. The smaller the Bloom filter, the smaller the
memory and network overhead and the larger the fraction of
uncovered tail ads. SmartAds could also disable the Bloom
filter at the client, in which case the client would send local
features of all words in the current page to the server. This
would increase network overhead compared to our current
Bloom-filter-based design, but would still be cheaper than
sending the raw text and metadata of the whole page.

6.3 Developer provided keywords
The reader may have wondered whether app developers

could supply the right keywords to ad controls at run time,
obviating the need for SmartAds. A few mobile ad con-
trols do have this option [2]. For example, the developer of
a recipe app can specify appropriate keywords, allowing the
ad server to deliver ads on food ingredients or groceries. One
might argue that an app developer could hard-code static ad
keywords for every page of his app. He could also implement
some logic to dynamically generate them during runtime.
However, such logic is hard to implement in practice be-

cause the quality of an ad keyword depends on information
the developer might not have access to (e.g., how popular
a keyword is among advertisers). SmartAds automates the
whole process with zero developer effort. Note also that for
certain apps such as news aggregator, the developer simply
does not know what content may be displayed at runtime.
Finally, allowing app developers to specify keywords opens
up the possibility of keyword pollution, where a developer
intentionally provides popular keywords that do not appear
in the page, in an attempt to increase the chance of get-
ting matching ads from the ad network. Therefore, some ad
networks simply ignore developer-provided keywords.

7. RELATED WORK
There is very little research literature specifically related

to improving the relevance of mobile advertisements, and
most of that has focused on using location to increase the
relevancy of the advertisements shown. In the AdNext sys-
tem [19], authors propose to use mobility patterns to predict
which store the user is likely to visit next, and show him ad-
vertisements related to that store. In [15], authors consider
using various physical contexts such as location and user ac-
tivities to serve ads. These works are orthogonal to Smart-
Ads; SmartAds could incorporate such additional signals to
further increase ad relevance.

The CAMEO framework [18] and the study in [23] con-
sider pre-fetching advertisements and displaying relevant ads
at the right time. The focus of these works is on saving
bandwidth by pre-fetching ad — not on increasing relevance.
CAMEO considers location and app name as the only rel-
evance signal. We have not considered the possibility of
prefetching the ads in SmartAds design, since we want to
adapt the ads dynamically to the content being displayed to
the user.

Many researchers have focused on power consumption and
privacy issues raised by mobile apps, and by advertisement
controls. While we are indeed concerned about resource uti-
lization and privacy, these issues are not the primary focus
of our paper. However, we will discuss representative pa-
pers for sake of completeness. In [26], authors have shown
that much of the energy consumed by mobile apps is used
by third-party ad controls. The SmartAds control is de-
signed to consume as few resources as possible. A number
of researchers have looked at privacy violations by mobile
apps [11, 10, 15] and especially those of third-party ad con-
trols [14]. SmartAds protects app user’s privacy by leaking
only which ad keywords occur on the screen.

Delivering relevant ads to web pages has been well studied.
In achieving the goal, one of the most popular approaches
is keyword extraction. Riberio-Neto et al. [29] propose a
series of strategies to match ads with web pages, based on
keywords extracted from both the ad body and the web page
content. Centering on keyword extraction, many methods
have been proposed to better describe both advertisements
and web pages, in order to match them more accurately. For
instance, eBay uses their custom features (such as merchan-
dise categories) to depict their advertisements, in matching
their ads with numerous 3rd-party web pages [30]. KEX
[34] uses additional web-specific features (e.g., HTML tags,
URL, etc.) to identify keywords that carry more weights
from any given web page. Inspired by them, SmartAds fur-
ther employs features that are specific to mobile application
UI in order to improve the quality of extracted keywords.

“Just-in-time” contextual advertising dynamically extracts
keywords and other signals from dynamic web pages for se-
lecting relevant ads [5, 20]; however, as mentioned in Sec-
tion 2, they use web page-related features and are not di-
rectly applicable to mobile apps. Beyond keywords, several
‘deeper’ features have been employed for delivering relevant
ads, including semantics mined from web pages (e.g., top-
ics) [7] and user interactions in browsing [9]. However, such
in-depth understanding requires to run intensive algorithms
(usually in the cloud) over full page contents or user inputs,
making them infeasible in the case of mobile Ads due to
privacy concerns.

8. CONCLUSION
Our focus in this paper was to bring contextual advertising

to mobile ads. Using data crawled from 1200 top Windows
Phone apps, we demonstrated the need for a system that
delivers contextual ads. We designed and built SmartAds,
a contextual mobile advertising system that strikes a right
balance between ad relevance, efficiency and privacy.

Through a large user study, we showed that SmartAds
significantly improves the relevance of mobile ads compared
to systems that rely only on the metadata information of
the app. We also analyzed the performance of SmartAds
end-to-end and showed that SmartAds is efficient, consumes
minimal resources and incurs low overhead.

9. REFERENCES
[1] Admob. http://www.google.com/ads/admob.

[2] Admob. keyword-targeted ads.
http://support.google.com/admob/bin/answer.py?

hl=en&answer=1307264.

[3] Google adsense. http://www.google.com/adsense.

[4] Advertising.com. http://www.advertising.com/.

[5] A. Anagnostopoulos, A. Z. Broder, E. Gabrilovich,
V. Josifovski, and L. Riedel. Web page summarization
for just-in-time contextual advertising. ACM Trans.
Intell. Syst. Technol., 3(1):14:1–14:32, 2011.

[6] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Commun. ACM, 13(7):422–426,
1970.

[7] A. Broder, M. Fontoura, V. Josifovski, and L. Riedel.
A semantic approach to contextual advertising. In
SIGIR, 2007.

[8] A. Broder and M. Mitzenmacher. Network
applications of bloom filters: A survey. Internet
Mathematics, 1(4):485–509, 2002.

[9] K. S. Dave. Computational advertising: leveraging
user interaction and contextual factors for improved
ad retrieval and ranking. In WWW, 2011.

[10] D. Davidson and B. Livshits. Morepriv: Mobile os
support for application personalization and privacy.
Technical report, Microsoft Research, 2012.

[11] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. Seth. TaintDroid: An
Information-Flow Tracking System for Realtime
Privacy Monitoring on Smartphones. In OSDI, 2010.

[12] H. Falaki, R. Mahajan, S. Kandula,
D. Lymberopoulos, R. Govindan, and D. Estrin.
Diversity in smartphone usage. In MobiSys, 2010.

[13] Flurry Blog. The great mobile ad spending gap.
http://blog.flurry.com, February 2012.

[14] M. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi.
Unsafe Exposure Analysis of Mobile In-App
Advertisements. In WiSec, 2012.

[15] M. Hardt and S. Nath. Privacy-aware personalization
for mobile advertising. In ACM CCS, 2012.

[16] iAd. http://advertising.apple.com/.

[17] S. Iqbal and B. Bailey. Effects of intelligent
notification management on users and their tasks. In
ACM CHI, 2008.

[18] A. J. Khan, K. Jayarajah, D. Han, A. Misra, R. Balan,
and S. Seshan. CAMEO: A middleware for mobile
advertisement delivery. In ACM MobiSys, 2013.

[19] B. Kim, S. Kang, J.-Y. Ha, Y. Rhee, and J. Song.
AdNext: A Visit-Pattern-Aware Mobile Advertising
System for Urban Commercial Complexes. In
HotMobile, 2012.

[20] L. Li, W. Chu, J. Langford, and R. E. Schapire. A
contextual-bandit approach to personalized news
article recommendation. In WWW, 2010.

[21] Microsoft advertising.
http://advertising.microsoft.com/.

[22] R. Mittal, A. Kansal, and R. Chandra. Empowering
developers to estimate app energy consumption. In
MobiCom, 2012.

[23] P. Mohan, S. Nath, , and O. Riva. Prefetching mobile
ads: Can advertising systems afford it? In EuroSys,
2013.

[24] Microsoft mobile ad control.
http://advertising.microsoft.com/mobile-apps.

[25] S. Ovide and G. Bensinger. Mobile ads: Here’s what
works and what doesn’t.
http://online.wsj.com/article/

SB10000872396390444083304578016373342878556.

html?mod=WSJ_hp_EditorsPicks, September 2012.

[26] A. Pathak, Y. C. Hu, and M. Zhang. Where is the
energy spent inside my app? Fine Grained Energy
Accounting on Smartphones with Eprof. In EuroSys,
2012.

[27] C. Perzold. Microsoft Silverlight Edition:
Programming Windows Phone 7. Microsoft Press,
2010.

[28] L. Ravindranath, J. Padhye, S. Agarwal, R. Mahajan,
I. Obermiller, and S. Shayandeh. AppInsight: Mobile
App Performance Monitoring in the Wild. In OSDI,
2012.

[29] B. Ribeiro-Neto, M. Cristo, P. Golgher, and
E. de Moura. Impedance coupling in content-targeted
advertising. In SIGIR, 2005.

[30] X. Wu and A. Bolivar. Keyword extraction for
contextual advertisement. In WWW, 2008.

[31] Yahoo! Smart Ads.
ttp://advertising.yaoo.com/marketing/smartads/.

[32] Yahoo publisher network. http:
//advertisingcentral.yahoo.com/publisher/index.

[33] J. Yan, N. Liu, G. Wang, W. Zhang, Y. Jiang, and
Z. Chen. How much can behavioral targeting help
online advertising? In WWW, 2009.

[34] W.-t. Yih, J. Goodman, and V. R. Carvalho. Finding
advertising keywords on web pages. In WWW, 2006.

