
Characterizing Emerging Heterogeneous Memory

Du Shen, Xu Liu
Department of Computer Science

College of William and Mary, U.S.
{dshen, xl10}@cs.wm.edu

Felix Xiaozhu Lin
Department of Electrical and Computer Enginnering

Purdue Univesity, U.S.
xzl@purdue.edu

Abstract
Heterogeneous memory (HM, also known as hybrid memory) has
become popular in emerging parallel architectures due to its pro-
gramming flexibility and energy efficiency. Unlike the traditional
memory subsystem, HM consists of fast and slow components.
Usually, the fast memory lacks hardware support, which puts ex-
tra burdens on programmers and compilers for explicit data place-
ment. Thus, HM provides both opportunities and challenges with
programming parallel codes. It is important to understand how to
utilize HM and set expectations on the benefits of HM. Prior work
principally uses simulators to study HM, which lacks the analysis
on a real hardware.

To address this issue, this paper experiments with a real system—
the TI KeyStone II— to study HM. We make three contributions.
First, we develop a set of parallel benchmarks to characterize the
performance and power efficiency of HM. It is the first benchmark
suite with OpenMP 4.0 features that is functional on real HM ar-
chitectures. Second, we build a profiling tool to provide guidance
for placing data in HM. Our tool analyzes memory access pat-
terns and provides high-level feedback at the source-code level for
optimization. Third, we apply the data placement optimization to
our benchmarks and evaluate the effectiveness of HM in boosting
performance and saving energy.

Categories and Subject Descriptors C.4 [Performance of sys-
tems]: Measurement techniques, Performance attributes; D.2.8
[Metrics]: Performance measures.

General Terms Measurement, Performance

Keywords Heterogeneous memory, data placement, heterogeneous
benchmarks, performance characterization

1. Introduction
In modern computer systems, the speed gap between processors
and memory has become huge. As a result, accessing main mem-
ory incurs not only high latency but also excessive energy. To
bridge such a speed gap, CPUs employ mulitple levels of caches.
Cache hits reduce memory access latency. Caches are precious re-
sources due to their limited space. For a traditional memory sub-
system, hardware manages caches at the granularity of cache lines.
Hardware also employs built-in algorithms, e.g., least recently used

(LRU), to determine which lines of data to evict. Moreover, multi-
core systems employ sophisticated protocols (e.g., MESI) to guar-
antee the data consistency in private and shared caches, associated
with different cores and sockets.

Caches are transparent to compilers and programmers. One can-
not explicitly control the data placement and replacement in caches.
Software usually cannot explicitly control the data locality to ex-
ploit caches. One policy does not fit all usage patterns. Hence, ex-
isting hardware-managed caches do not provide a straightforward
way to achieve the optimal performance. Without the entire pro-
gram profile, hardware is handicapped in making best data move-
ment decisions. The situation is aggravated in the context of parallel
architectures, where cores compete for shared cache. For example,
the cached data may be evicted without being fully utilized due to
an eviction caused by another core. Contention can significantly
degrade program performance. Because of the existing hardware-
managed cache system, one can only use some workarounds to ex-
plicitly but indirectly interact with caches, such as non-temporal
instructions [32], cache partitioning based on page coloring [22],
and memory footprint reduction via loop tiling [6]. Though effec-
tive, these workarounds rely on special support from instruction set
architectures (ISAs), special hardware, customized operating sys-
tems and complex source code transformations.

As an alternative, emerging parallel architectures offer hetero-
geneous memory (HM, also known as hybrid memory) to comple-
ment hardware-managed caches. A typical HM system consists of
a fast memory component and a slow memory component. The fast
component, unlike traditional caches, needs explicit software op-
erations to hoist or evict data in or out. Memory techniques in-
clude 3D stack memory [24] and non-volatile memory [4], which
together with traditional DRAM form the emerging HM systems.
For example, the latest generation of Intel Xeon Phi, Knights Land-
ing (KNL), has on/off-package memories. The on-package mem-
ory has 5× the bandwidth of off-package memory [17]. The KNL’s
memory hierarchy is a kind of HM. Moreover, scratchpad mem-
ory [5] is widely used in accelerators, such as GPUs and digital
signal processors (DSPs), and has a higher bandwidth and lower
latency than DRAM. In this paper, we refer to a system with fast
and slow memory as HM.

HM offers flexibility in managing data. For example, program-
mers can partition the fast memory across different threads to avoid
contention. Another advantage of HM is its power efficiency. HM
does not require power hungry hardware mechanisms for cache
management [36]. In the foreseeable future, HM will become more
popular to complement hardware caches for its programming flex-
ibility.

However, software-based data movement can incur much higher
overhead than a hardware-based approach. Thus, inappropriate data
placement and frequent data movement in HM can significantly
degrade memory performance, negating its benefit. Therefore, it is
important to characterize the performance and energy consumption



of HM to achieve beneficial data placement. Prior work mainly
utilizes simulators to study the data placement [7, 16, 20, 31,
37]. There are two weaknesses to this approach: first, given the
complex architectures, it is difficult to simulate every feature of
HM and its interactions with the CPUs. Second, due to the high
overhead of simulation, it is time consuming to evaluate real, long-
run parallel programs. To address these two issues, we study HM
in real hardware in this paper.

Given the real hardware evaluation, we have the following ques-
tions: (1) For a real parallel program, how should we place its data
in HM to achieve high performance? (2) How much can a real HM
affect a program’s performance and energy? In pursuit of answers
to these questions, we make three contributions in this paper:

• We develop a benchmark suite, HMBench. HMBench is coded
in OpenMP and runs on HM-based machines. To the best of our
knowledge, it is the first benchmark suite based on OpenMP 4.0
standard for studying the performance and energy impacts of
HM.

• We design a performance tool, DataPlacer, to guide data place-
ment in HM. This tool can help programmers when they try
to port their code to a system with HM. DataPlacer provides
rich information sorted by key metrics to intuitively present the
analysis results.

• We optimize HMBench guided by DataPlacer. We utilize the
original and optimized benchmarks to characterize the capabil-
ities of HM-based architectures and understand the importance
of HM in both performance and energy.

We use KeyStone II [36], a server-class ARM+DSP hetero-
geneous architecture from Texas Instruments, in our studies.
KeyStone II’s HM consists of an off-chip DRAM and a rel-
atively large on-chip SRAM (scratchpad memory). We choose
DRAM+scratchpad memory to study HM because stacked memory
and non-volatile memory are not commercially available. More-
over, the scratchpad memory on KeyStone II is much larger than
the ones in existing embedded systems, which can be effectively
used to emulate the emerging fast memory. In the rest of this paper,
we refer to DRAM and scratchpad memory as HM on KeyStone II.

Our experiments show that HM demands extensive attentions to
obtain high performance and low energy benefits. Our DataPlacer
provides rich information with reasonable overhead to successfully
guide data placement in HM. This paper also provides insights and
practical evaluation of the KeyStone II.

This paper is organized as follows. Section 2 reviews state-of-
the-art work and distinguishes our approach from prior work. Sec-
tion 3 describes KeyStone II, the testbed we use to evaluate HM.
Section 4 describes the design and implementation of HMBench,
which is used to characterize the performance and energy effects of
HM. Section 5 describers DataPlacer, a tool to provide high-level
guidance for optimization with HM. Section 6 studies HMBench in
KeyStone II, including performance characterization, power mea-
surement, and HM-based optimization. Section 7 discusses some
limitations in studying HM with KeyStone II. Section 8 offers our
conclusions and previews future work.

2. Related Work
HM has been recognized as a key alternative or complement to
caches and main memory [5]. Due to its simpler hardware design, it
can provide high performance, predictability, and energy efficiency.
Prior research demonstrates that HM-based systems are able to
achieve higher performance than cache-based systems when the
program data is carefully placed [1]. In modern accelerators, such
as Keystone II[35], HM is regarded as a key enabler for high Gflop-
s/Watt value [18], as has been demonstrated in hand-optimized

programs [15]. However, using HM faces key challenges of pro-
grammability in obtaining good performance.

Recognizing the significance of HM, much work has been done
to ease its management. Unfortunately, due to the difficulty in ac-
cessing real hardware platforms and applications, prior evaluation
methodologies were limited to two categories: most of them are
simulation without actual hardware [11, 28, 30]; some of them re-
play memory trace on hardware platforms, for which the memory
trace is often recorded by using a simulator or software instrumen-
tation [27]. Our efforts bridge the gap with a realistic benchmark
suite targeting physical platforms.

The lack of an HM benchmark suite has been an impor-
tant drawback. In much of the prior work, micro benchmarks
have been used [1, 14, 33]. However, it is often difficult to map
the micro benchmark outcome to that of real applications. Some
work employs macro benchmarks in studying HM, however, with
somewhat ad-hoc choices. The macro benchmarks employed in-
clude SPEC2006 [11], NAS [10], LULESH [28], or hand-selected
apps [30]. It is unclear to what extent these benchmarks can exer-
cise HM and therefore these benchmarks cannot quantify the bene-
fits of HM.

Since HM was often employed in embedded and network pro-
cessors, embedded systems benchmarks, e.g., MiBench, are of-
ten selected in evaluating HM proposals targeting these proces-
sors [3, 27]. However, embedded system benchmarks often feature
very small working sets, from tens to hundreds of KBs. This is also
the case for GPU. Since HM is a critical feature of GPU, well-
known GPU benchmarks, e.g. SHOC[12], are often exploiting HM
for performance and are used in evaluating software that manages
GPU HM [9, 19]. However, SHOC benchmarks are explicitly tuned
towards the small HM (a few hundreds of KB) on GPU. Moreover,
the CUDA programming model cannot represent the general multi-
threading models in mainstream CPU processors. Thus, the result-
ing programs can hardly exercise the large HM that are emerging
in new architectures, such as KeyStone II.

Beyond an effective benchmark suite, there exists no tool to
guide the data placement in heterogenous memory systems. Our
previous work on memif [21] provides an efficient way to support
data movement between fast and slow memory in KeyStone II.
However, memif is an OS service for data movement, providing
no guidance for the data placement to an application developer.
A recent work [13] describes a profiler to analyze memory access
patterns to guide data placement. However, the profiler does not
provide performance insights such as memory footprint metrics in
the full calling contexts, which are important to understand the data
structure allocations and program phases.

Unlike existing approaches, we developed HMBench, which
has three unique advantages. First, HMBench is developed based
on a widely used benchmark suite, Rodinia, which represents the
program behaviors of different domains. Second, HMBench lever-
ages the latest OpenMP 4.0 standard. Furthermore, we developed
DataPlacer and released it along with HMBench. DataPlacer, to the
best of our knowledge, is the first practical tool that provides high-
level optimization guidance, such as a variety of metrics within the
full calling contexts, when programmers port source code to a HM-
based machine.

3. Testbed Description and Motivation
Texas Instruments (TI) Corporation developed KeyStone II, a
heterogeneous chip that employs CPUs and DSPs. It aims to
achieve high performance with low energy costs. A KeyStone II
chip integrates a quad-core ARM Cortex-A15 processor as the host
CPU and eight TMS320C66x DSPs as accelerators. Each ARM
core has 1.4 GHz clock frequency, while each DSP has 1.2 GHz.
The theoretical peak performance of the overall chip is 63 GFLOPS
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Figure 1: The architecture and memory hierarchy of the KeyStone
II. Part of L2 cache in DSP and the whole MSMC shared by DSP
and ARM are configured as HM by default.

Table 1: Bandwidth comparison of MSMC and DDR with a single
thread.

HM copy scale add triad
MSMC 5.1 GB/s 4.8 GB/s 5.4 GB/s 5.3 GB/s
DDR 2.7 GB/s 2.8 GB/s 2.6 GB/s 2.8 GB/s

of double precision and 198 GFLOPS of single precision [35].
The ARM cores and DSPs are coupled with security and packet
processing and Ethernet switching, which is designed for lower
energy consumption, compared to multi-chip solutions. The pro-
gramming models that KeyStone II supports are OpenMP [29] and
OpenCL [34]. The design of KeyStone II is for embedded infras-
tructure applications, such as media processing, high-performance
computing, transcoding, security, gaming, analytics, and virtual
desktop.

Figure 1 shows the architecture of KeyStone II and its memory
hierarchy. On the host side, each ARM core has a 32 KB L1 in-
struction cache and 32 KB data cache. All four ARM cores share
a 4 MB L2 cache. Both L1 and L2 caches on the host ARM cores
are managed by hardware. On the accelerator side, each DSP has
a 64 KB L1 cache and a 1 MB L2 cache. By default, the L2 cache
is configured as a 256 KB hardware-managed cache and a 768 KB
scratchpad memory. The host and accelerators share a Multicore
Shared Memory Controller (MSMC), a scratchpad memory of 6
MB. Beyond MSMC, both CPU and DSP have memory controllers
to access main memory (DDR). In KeyStone II, both the scratchpad
memory in L2 and MSMC are fast HM layers, which requires soft-
ware to control the data placement and manage data consistency.

With the default configuration, the KeyStone II has three HM
layers: L2 scratchpad memory, L3 MSMC, and DDR. Unlike other
embedded systems, the scratchpad memories (L2 and L3) in the
KeyStone II are large enough to emulate future HM in the main-
stream CPU architectures. To explicitly place the data in each layer,
TI provides APIs as shown in Listing 1. These APIs, like standard
data allocation functions (malloc and free) in libc, can allocate
and free memory in different HM layers. The KeyStone II maps the
space of different HM layers to disjoint memory segments. One can
simply issue a memcpy to copy data from one memory segment to
another.

Performance characterization of the KeyStone II’s HM

To evaluate the impacts of L2, MSMC, and DDR in program
performance, we developed two micro benchmarks to characterize
KeyStone II: Stream and Lat. The description of the two micro
benchmarks is as follows:

/* to allocate in L2 */
void __heap_init_l2 (void *ptr , int size);
/* to manage a heap on L2 */
void *__malloc_l2 (size_t size);

/* to allocate in msmc */
void __heap_init_msmc (void *ptr , int size);
/* to manage a heap on MSMC */
void *__malloc_msmc (size_t size);
void *__calloc_msmc (size_t num ,size_t size);
void *__realloc_msmc (void *ptr ,size_t size);
void __free_msmc (void *ptr);
void *__memalign_msmc (size_t alignment , size_t

size);

/* to allocate in ddr */
void __heap_init_ddr(void *ptr , int size);
/* to manage a heap on DDR */
void *__malloc_ddr (size_t size);
void *__calloc_ddr (size_t num , size_t size);
void *__realloc_ddr (void *ptr , size_t size);
void __free_ddr (void *ptr);
void *__memalign_ddr (size_t alignment , size_t

size);

Listing 1: APIs for managing KeyStone II’s L2 cache, MSMC, and
DDR.

• Stream, a well-known benchmark [26], is used to quantify the
memory bandwidth. It issues memory accesses with streaming
patterns, such as array copy, scale, add, and triad. We adapt
Stream to measure the bandwidth of both MSMC and DDR.

• Lat is developed for evaluating the performance impact of dif-
ferent data placement policies in HM-based memory hierar-
chies. The kernel of Lat is a sequence of random accesses to an
array placed in a specific HM layer. It also moves data between
different HM layers to evaluate the data movement latency.

Table 1 shows the experimental results of bandwidth tests in
MSMC and DDR. We can see that MSMC’s bandwidth is around
1.7-2× DDR’s bandwidth, with respect to different access patterns.
Moreover, Lat shows that placing data in MSMC obtains an 8× ac-
celeration compared to placing data in DDR. The L2 scratchpad
memory shows similar latency as MSMC. Additionally, Lat eval-
uates aggressive data movement policy, which always loads each
word one by one from DDR to MSMC before using it. This pol-
icy significantly degrades the performance because of the nontriv-
ial overhead incurred by the software-based memory movement.
It causes a 10× slowdown compared to the original code with all
accesses to DDR, and an 80× slowdown compared to the optimal
code with all accesses to MSMC.

The experiments on these two micro benchmarks demonstrate
the importance of data placement and data movement policies when
porting code to HM-based systems. It is necessary to have a set of
benchmarks and tools to characterize the performance impact of
HM in the real world. The following sections describe the design
and implementation of the benchmarks and tools with this purpose.
It is worth noting that the benchmarks we propose in this paper
are general for HM systems beyond the KeyStone II. It is publicly
available at https://bitbucket.org/hmbench/hmbench.git.

4. Design and Implementation of HMBench
We develop HMBench, a benchmark suite to characterize the per-
formance impact of HM in real hardware. HMBench meets the fol-
lowing four criteria.

1. HMBench needs to work on heterogeneous architectures, i.e.,
CPU+accelerators, because modern HM (e.g., scratchpad mem-
ory + DRAM) is widely used in accelerators, rather than main-
stream CPUs.

https://bitbucket.org/hmbench/hmbench.git


Table 2: Benchmark descriptions.

Application/Kernel Domain Description

mtrans linear algebra Matrix Transposition.
mmulti linear algebra Matrix Multiplication.
bfs graph algorithm Breadth-First Search one a graph.
cfd fluid dynamics Computational Fluid Dynamics solves 3-D Euler equations for compression fluid

flow.
hotspot physics simulation Hotspot is a thermal simulation benchmark that assesses processor temperatures.
kmeans data mining K-means clusters points into user specified number of categories based on the

distance to other points.
lavaMD molecular dynamics LavaMD computes particle potentials and relocation forces. It divides a 3D space

into cubes for computation.
lud linear algebra Lud performs matrix LU decomposition.
nn data mining Nearest Neighbor is a benchmark that finds the first k nearest neighbors for a

specified location.
nw bioinformatics Needleman-Wunsch is a benchmark that performs DNA sequence alignment opti-

mization.
particlefilter medical imaging Particle Filter assesses the location of a target object with noisy measurements of

the target’s location.
pathfinder grid traversal Pathfinder searches a path with the lowest aggregate weights in a 2-D grid.
srad image processing Srad, with the full name Speckle Reducing Anisotropic Diffusion, is a diffusion

algorithm that removes speckles from an image.

2. HMBench should run in parallel, as accelerators typically em-
ploy multiple threads for high thread-level parallelism, which
leads to significantly different behaviors in HM from sequential
execution.

3. HMBench should leverage the interfaces provided by the HM
to control the data placement and movement for evaluating
different strategies.

4. HMBench should cover different kinds of applications. As the
performance of HM is tightly related to memory access pat-
terns, which differ significantly in different kinds of applica-
tions, ranging from data analytics to scientific computing. Thus,
a high coverage of applications can evaluate HM thoroughly.

HMBench leverages omp target to support heterogeneous
workloads. Thus, HMBench, with minimal adaptation, works on
existing and emerging HM architectures in accelerators or co-
processors, such as DSP, GPU and Xeon Phi. Moreover, it provides
APIs to encapsulate memory management interfaces provided in
HM-based architectures. The initial benchmark suite consists of 13
applications from different areas, including two scientific bench-
marks for matrix computation and 11 benchmarks derived from Ro-
dinia 2.2 [8]. The reason we choose to adapt Rodinia benchmarks
is that Rodinia has a good coverage of application domains. It has
an OpenMP implementation but no HM-aware design, which pro-
vides us an opportunity to extend its benchmarks with the OpenMP
4.0 standard and HM-friendly design. HMBench is open to enclose
more benchmarks in the future. In the rest of this section, we de-
scribe different benchmarks in detail and show our design and im-
plementation specific for HM-based accelerators.

4.1 Benchmark Description
Table 2 shows the descriptions of HMBench benchmarks. They
are highly representative in their own fields according to Rodinia’s
specification [8]. Together with two matrix-based scientific bench-

marks, HMBench has good coverage of different domains of real-
world parallel applications.

4.2 Simple Benchmark Implementation
Porting these benchmarks to an HM-based system, such as the Key-
Stone II, is nontrivial. The challenges come from its uncommon
architecture and system support, which is different from general-
purpose CPUs. Specifically, we need to handle work decomposition
between CPU and accelerators, limited compiler support in accel-
erators, and lack of I/O capability in accelerators. In the rest of this
section, we use the KeyStone II to illustrate the challenges and our
solutions.

Work decomposition To fully leverage the computing resources
in the KeyStone II, we need to split the work into the CPU part
and the DSP part. We apply a simple work decomposition strategy
in HMBench: we offload all OpenMP parallel regions to the DSP
device and leave all non-OpenMP regions running on the CPU.
As most computation is done in the OpenMP regions, this strategy
can expose as much as computation for evaluating the HM on the
accelerator (DSP) side.

To allow different vendor-provided compilers work on different
code regions, the offload code region must be encapsulated in a
subroutine and placed in a separate target source file. Thus, the
CPU compiler can produce CPU binary and also cross compile the
DSP binary for execution. To encapsulate each OpenMP region, we
identify its inputs and outputs, which are all passed as arguments
by reference to the new subroutine.

Code adaptation for the DSP compiler The DSP compiler only
supports C-like syntax. Thus, the code running on the DSP cannot
use C++ features, such as classes, memory allocations, and type
conversions. Moreover, moving data between CPU and DSP re-
quires the support from DSP’s OpenMP compiler, which explic-
itly accepts array names and sizes. However, the compiler does
not support multi-dimensional arrays well. In order to move multi-
dimensional arrays between CPU and DSP, we need to map them



to a continuous 1-D memory chunk for processing on DSP, and
then map them back to the original layout for processing on CPU.
Benchmarks, such as pathfinder, need such code transforma-
tions.

System I/O Some benchmarks, such as bfs and nn, require input
files. Since the DSP software stack in the KeyStone II does not
support system I/O, we need to modify the codes so that the host
CPU reads input files and map the data to the DSP for computation.
DSPs process the data and move it back to the host for writing to the
file system. This simple scheme works for most of our benchmarks.
However, there is one exception. Benchmark nn repeatedly reads
in 10 entries of a database for processing, until completing the
whole database. To avoid frequent data movement between CPU
and DSP, we perform the I/O once to read in all the entries in the
input database and offload them altogether to DSP for processing.

Summary: HMBench vs. Rodinia Although HMBench shares
some common programs with the Rodinia benchmark suite, it over-
hauls their implementations: (1) HMBench uses OpenMP 4.0 omp
target to offload parallel regions to accelerators, where we can
use the fast scratchpad memory. We identify the input and output
data for omp target pragma to ensure the correctness of the code.
Moreover, as aforementioned, we need to transpose the array layout
for the data transfer between the host and accelerator. (2) HMBench
fuses OpenMP regions to minimize the data transfer overhead be-
tween the host CPU and the target accelerator. (3) HMBench is
extended to manage allocations of heterogeneous memory.

4.3 Limitation of HMBench Implementation
Our implementation of HMBench is straightforward, without tak-
ing the HM into consideration. By default, the compiler places all
data in the slow memory, e.g., DDR of the KeyStone II. Bench-
marks with this implementation do not achieve good performance.
We need to take advantage of different HM layers to cache data for
efficient accesses. However, determining which data to place in the
fast HM layers is difficult, so we need a profiling tool to help make
decisions. The next section describes DataPlacer for this purpose.

5. Design and Implementation of DataPlacer
It is challenging for programmers to port code to an HM-based
system. One needs high-level guidance to place data objects in
the fast HM layers to obtain high performance. In this section, we
describe the design and implementation of DataPlacer, a profiler
that identifies optimization opportunities of data placement in HM.
Figure 2 shows the workflow of DataPlacer. DataPlacer works on
an x86 host machine. It monitors program execution and provides
optimization guidance for porting this code to an HM-based target
machine. DataPlacer has the following three features to make it an
effective tool.

• DataPlacer provides software metrics only. Because the host
and target machines have different architectures, using the
host’s hardware metrics is inappropriate to guide the optimiza-
tion in the target HM-based machine.

• DataPlacer provides high-level optimization guidance for pro-
grammers. The guidance can be easily used for source code
transformation.

• DataPlacer can monitor parallel program execution with rea-
sonable overhead. For private and shared HM layers between
multi-cores, DataPlacer provides different optimization guid-
ances.

In the rest of this section, we describe the basic methodology of
DataPlacer and several refinements to make it practical.

X86 architecture
HM-based

architecture

source code

executable

source code

DataPlacer

executable

optimized
source code

pro
file

s

porting code

Figure 2: The functionality of DataPlacer. DataPlacer monitors
program execution on x86 and generates pure software-based pro-
files to guide program optimization when porting the code to an
HM-based architecture.

5.1 Basic Methodology of DataPlacer
DataPlacer leverages Intel Pin [25] to instrument binary and collect
memory traces. All the analyses are based on the memory traces
without using any information from architecture-specific hardware
performance counters. To provide high-level optimization guid-
ance, DataPlacer performs array-centric analysis. It identifies ar-
rays with a significant amount of accesses, which, if put into fast
HM layers, can improve performance. With this guidance, pro-
grammers can easily transform the source code for optimization.
To achieve array-centric analysis, DataPlacer needs to monitor ar-
ray allocations, associate memory accesses with arrays, and derive
metrics for analysis.

Tracking array allocations DataPlacer leverages Pin to analyze
a binary executable and monitor its execution to extract array allo-
cations. DataPlacer monitors both static and heap arrays. On one
hand, DataPlacer reads the symbol table of the binary to identify
the names and memory ranges of static arrays. On the other hand,
DataPlacer instruments array allocation functions, such as malloc,
calloc, and realloc, to capture the allocated memory ranges
as well as the allocation location mapped to the source code with
the help of compiler debugging information. DataPlacer logs these
memory ranges and IDs (names for static arrays and allocation sites
in source code for heap arrays) into a map for further use.

Collecting and attributing memory traces DataPlacer utilizes
Pin to instrument both memory loads and stores for their effec-
tive addresses. Upon a memory access, DataPlacer checks the map
to identify the memory interval that includes the effective ad-
dress of this memory access and associates it with the array. Data-
Placer counts the number of accesses attributed to each array. For
multithreaded programs, accesses from multiple threads can be at-
tributed to the same array at the same time, so DataPlacer needs to
use atomic operations to ensure the correctness of accumulating the
counter.

Deriving metrics From the array-centric analysis, DataPlacer ob-
tains the number of accesses to each array. Arrays with significant
accesses are candidates for being placed into the fast HM layers.
To weigh the significance of arrays, we use Equation 1 to derive a
metric F̂ for each array, which is the average access frequency per
byte. In the equation, C is the total number of memory accesses to
an array. S is the number of memory bytes allocated to the array.

F̂ =
C

S
(1)

DataPlacer sorts all arrays according to F̂ . With a greedy algorithm,
DataPlacer recommends placing arrays with high F̂ until the space
of HM runs out.



5.2 Refined Methodology of DataPlacer
The basic design of DataPlacer is inadequate to be used in practice.
There are five major issues.

1. Metrics F̂ and C alone are insufficient in providing effective
guidance. We need more insightful access pattern analysis to
extract more features of an array, such locality, beyond the
simple access quantity.

2. If the fast HM layers have limited space and the arrays used
in the programs are too large to fit in, DataPlacer cannot place
such large arrays. Moreover, not all elements of an array have
the same number of accesses to receive the equal treatment.

3. HM may have layers that are private or shared between cores.
Applying the same data placing strategy to different kinds of
HM layers may hurt performance. For example, inappropriate
placement can cause high overhead due to maintaining data
consistency.

4. DataPlacer produces static data placement guidance. Once the
data is loaded into HM, it never gets replaced. In practice, static
placement preclude optimal performance because program ex-
ecution can have different phases with different memory access
patterns.

5. A system that integrates both traditional hardware caches and
HM is difficult to optimize. DataPlacer needs to take this into
consideration for HM-based data placement.

Thus, we refine DataPlacer to address all these issues.

Data locality An array with a large stride or a random access
pattern does not exploit the reuse in caches. We call such array
one of poor locality. An array of poor locality can significantly
degrade program performance because accesses to this array are
more likely to suffer from cache misses and high exposed memory
latency. Therefore, DataPlacer prioritizes the placement of arrays
with bad locality into fast HM. DataPlacer adopts our previous
approach [23] to collect the reuse distance of memory accesses
and associates them with arrays. The technology is to instrument
all memory accesses and record the trace of effective addresses in
a hash map for the computation of reuse distance. We report the
instructions and arrays associated with long reuse distances as with
poor locality. We evaluate the necessity for placing arrays of poor
locality in Section 6.

Large arrays DataPlacer decomposes the memory intervals allo-
cated for large arrays into small chunks with the sizes not larger
than N . N is tunable by programmers; by default, we set it as
one tenth of the HM size. DataPlacer treats each chunk as a sep-
arate array and performs original array-centric analysis. With the
offsets computed for chunks in the array, programmers can easily
place part of the array in the HM. Besides handling large arrays
that do not fit into the HM, DataPlacer’s array decomposition is
more appropriate for handling irregular access patterns. With irreg-
ular access patterns, elements in an array may have different access
frequencies. The array decomposition provides more details in the
array internals for data placement.

Private vs. shared HM HM can be private or shared in a multi-
core system, e.g., the KeyStone II. For example, each DSP in the
KeyStone II has a private fast layer—L2 cache— and all eight
DSPs share a fast layer—L3 MSMC. Optimizations on these two
kinds of fast HM layers are different. On one hand, DataPlacer
recommends thread-local arrays rather than shared arrays to be
placed in private HM because handling shared arrays needs to
maintain data consistency. For example, if an element of a shared
array is updated by one thread in the private HM, the update should
be written back to the main memory. Moreover, all of the copies

Figure 3: Creating a CCT for a program and pruning it by discard-
ing nodes with small numbers of memory accesses. The blue nodes
are internal functions, while the red nodes are leaf functions.

of this element in different private HMs have to be invalidated and
reloaded from the main memory. In a traditional cache system, this
data consistency is guaranteed by the hardware, which is efficient.
However, HM requires software to keep the data consistency, which
is expensive. Thus, DataPlacer avoids recommending shared arrays
to be placed in private HM layers.

On the other hand, DataPlacer prioritizes shared arrays to be
placed in shared HM layers. If there is space, DataPlacer places
local arrays in the shared HM. One strength of this strategy is that
no software-based data consistency is needed. Moreover, shared
arrays are used by multiple threads, so loading them into shared
HM can benefit many threads. In contrast, loading local arrays into
shared HM only benefits a subset of threads, rather than all of them.

To provide appropriate optimization guidance, DataPlacer iden-
tifies whether an array is local or shared and adapts the array-centric
analysis accordingly. When it attributes memory accesses to arrays,
it also associates the IDs of threads that perform the accesses with
the array. If an array is accessed by more than one thread, Data-
Placer recognizes it as a shared array. Otherwise, it is a local array.

Static vs. dynamic placement The basic implementation of Data-
Placer produces the strategies of array placement in a static way:
once an array is placed in the HM, it is never evicted throughout
the entire execution. However, a typical program has phases. Load-
ing an array into the fast HM layer without using it in some phases
can waste the precious HM resources. Therefore, we improve Data-
Placer to provide guidance for placing arrays dynamically. The
main challenge of generating guidance for dynamic placement is
to identify the phase changes to apply dynamic adaptation of data
placement. Moreover, DataPlacer needs to provide high-level guid-
ance that can be used by programmers to refactor their source code.

To address the challenge, DataPlacer makes an assumption:
phase changes occur at function boundaries. In other words, Data-
Placer applies the same data placement strategy inside a function.
When switching to a different function, DataPlacer adapts the data
placement strategy, if needed, based on the memory accesses in
the new function only. However, frequent changes of data place-
ment are costly because of the heavyweight software-based data
movements. To reduce the overhead, DataPlacer adapts the data
placement when coming into a new function that invokes a signifi-
cant number of memory accesses. To provide high-level guidance,
DataPlacer associates memory accesses with functions in their full
calling contexts.

DataPlacer uses Pin [25] to instrument every function call and
return instruction. It maintains a shadow stack to track function
frames in the system execution stack. When calling a function,
DataPlacer pushes the function frame, identified by the starting
address of the function, into the shadow stack. When returning from
a function, DataPlacer pops the function frame on top of the shadow
stack. The calling context of any instruction under execution is in
the shadow stack. DataPlacer accumulates the number of memory



A total of 184016202 memory accesses.

Rank 0 >>>>
Dynamic Data 45703 chunk 1 accessed 33107904 times. 

Data allocation call path:
45678:0x7f20c32816e0:pushq %rbp:malloc::0
  45676:0x400dda:callq 0x400bf0:main:[...]/main.c:157             
    30599:0x7f20c3227b03:callq %rax:__libc_start_main::0 
      29824:0x401b40:callq 0x400ba0:_start: [...]/sysdeps/x86_64/start.S:122
        1:(nil)::THREAD[0]_ROOT_CTXT::0
                 
size = 898.109 KB contribution = 17.9918% F = 36.00

accessed by threads:
12445583 6927600 6867360 6867360

Footprint and accesses per context
Footprint is 4591168 Bytes, #accesses is 22831020 
Calling contexts:
24341:0x401cf0:movsxdl  (%r14,%rax,4), %rcx:main._omp_fn.1::0
  24289:0x401590:callq  0x401c10:main::0
    14026:0x7f896debbb03:callq  %rax:__libc_start_main::0
      13647:0x401b40:callq  0x400ba0:_start:/home/abuild/rpmbuild/BUILD/
      glibc-2.19/csu/../sysdeps/x86_64/start.S:122
        1:(nil)::THREAD[0]_ROOT_CTXT::0

Figure 4: An output example of DataPlacer when monitoring
srad.

accesses acc to the function frame on top of the shadow stack, as
exclusively to the function (not to its callers).

To efficiently maintain these per-function metrics, all the calling
contexts are organized in a compact data structure, called a calling
context tree (CCT) [2], by merging all common prefixes. Figure 3
shows a typical CCT. The root node of a CCT is the starting func-
tion, typically “main” or “thread start”; the internal nodes (in blue)
are functions that have function calls inside; the leaf nodes (in red)
are ones with no function call inside. To compute the inclusive met-
rics for each node (i.e., the aggregate metric of the function and
all its callees), DataPlacer traverses the CCT from bottom to top
to accumulate the inclusive acc for every node. It then prunes the
CCT, leaving the nodes that account for significant proportions of
memory accesses during the entire program execution, as shown
in Figure 3. For leaf nodes in the pruned CCT, DataPlacer treats
them as separate phases, in which the data placement strategy is
dynamically adapted according to the array-centric metric F̂ , com-
puted with memory accesses in the phase. As for the optimization,
programmers need to flush the data in the fast HM layers at the be-
ginning of the function and then place the data according to Data-
Placer’s suggestions.

Hybrid memory subsystem A system with hybrid hardware- and
software-managed cache/memory is challenging for data place-
ment. For example, each of KeyStone II’s DSPs has a 256 KB L2
cache that is managed by hardware. We find that if the dataset of a
program is small enough to fit into the hardware cache, placing data
objects into HM does not help its performance. Therefore, Data-
Placer collects memory footprints fp for each node in the pruned
CCT, like acc. Memory footprint is defined as the unique memory
bytes accessed in a calling context. Table 3 shows how DataPlacer
makes optimization decisions based on these two metrics. Data-
Placer suggests that optimizing data placement in contexts with
high acc and fp can lead to significant performance improvement.
If acc is low and fp is high, the code exposes little locality. Thus,
placing data into HM does not benefit performance much. More-
over, if fp is low, the hardware caches can hold all the data, mini-
mizing the effects of HM.

To collect fp, DataPlacer creates a hash set to maintain all
unique memory bytes accessed exclusively to CCT nodes. Like
acc, the hash set is merged from bottom to top in the CCT along all
call paths for the inclusive footprint of a context. fp of a function
is computed as the size of the inclusive hash set associated with the
function.

5.3 DataPlacer Output
DataPlacer produces the text output once the program finishes its
execution. Figure 4 shows an example output of DataPlacer for
srad, a case study to be described in the next section, running with
four threads. At the beginning of the output file, DataPlacer shows
the total number of memory accesses in this execution. Then, Data-
Placer ranks all data objects in a descending order by F̂ . In the fig-
ure, we only show one example array. DataPlacer outputs the data
ID (for DataPlacer’s internal usage) and the number of accesses.
For static arrays, DataPlacer displays its name. For dynamic ar-
rays, DataPlacer prints the full call path so that a programmer can
associate the data object with the source code. In this example, the
data object is allocated on heap by malloc. DataPlacer also maps
the call paths to the source code for easy interpretation: the malloc
is called at line 157 in main.c.

Moreover, DataPlacer computes the array size in bytes, the con-
tribution of memory accesses (in percentage) to the whole program
execution, and F̂ . DataPlacer lists the number of accesses by each
thread and identifies whether the data object is shared or private. In
this example, as all the four threads access this array, this array is
shared by all the threads and should be placed into the shared fast
memory layer.

DataPlacer also reports acc and fp, as shown in Table 4 for
the whole program. To give dynamic optimization guidance, Data-
Placer further reports acc and fp in all the functions with full call-
ing contexts. Figure 4 shows one example OpenMP function. As
this OpenMP function performs the most computation, DataPlacer
suggests to target this function with one strategy to place the array
in the fast memory, highlighted in the allocation call path.

It is worth noting that the text output of DataPlacer can contain
thousands of lines because all the allocations and functions with
their full call paths are included. However, by sorting all the items
(sorting arrays with F̂ and sorting functions with acc), we can
successfully shrink the searching space and focus on a few arrays
and function contexts. In the future, we plan to build a graphical
interface for DataPlacer for easy data interpretation.

6. Evaluation
We evaluate HMBench and DataPlacer on the TI KeyStone II. The
configuration of KeyStone II is described in Section 3. The com-
piler on the host side is gcc 4.7.2, while the complier on the
device side is TI’s OpenMP Accelerator Model Compiler clacc
1.1.1. We compile all the benchmarks in HMBench with -O3.
DataPlacer collects execution profiles of HMBench on an x86 ma-
chine, which has 16 Intel Xeon 3.2 GHz cores, with 192 GB
memory. DataPlacer monitors the program executions with eight
threads. The overhead is 40-60× the native execution. We average
the execution time and power consumption with running each ex-
periment five times; we find that variance is negligible.

We discuss our experiments in four aspects. In Section 6.1, we
optimize HMBench according to the guidance of DataPlacer. In
Section 6.2, we characterize the performance difference of HM-
Bench due to HM in KeyStone II. In Section 6.3, we characterize
the difference in power consumption with the utilization of HM in
KeyStone II. Finally, we discuss some issues in our experiments in
Section 6.4.

6.1 Optimizing HMBench on KeyStone II
With the guidance of DataPlacer, we are able to apply the optimiza-
tions to all the benchmarks in HMBench. To evaluate DataPlacer
and demonstrate our optimizations, we study four benchmarks in
detail. Without specific explanation, the speedups we report are
over the default execution of HMBench on KeyStone II, which does
not use the fast HM.



Table 3: DataPlacer’s optimization decisions based on two metrics.

acc fp optimization decisions
high high optimization with high priority
low high little performance gains (low data reuse)

low/high low little performance gains (dataset fit in hardware cache)

/* allocation and initialization */
#pragma omp parallel for ...
for( i = 0 ; i < N ; i++)

for( j = 0 ; j < N ; j++)
B[j][i] = A[i][j];

Listing 2: Code snippet of mtrans: matrix A is transposed into
matrix B.

float *m;
...
/* file input */
create_matrix_from_file (&m,input_file ,& matrix_dim);
...
/ *kernel computation */
lud_omp(m, matrix_dim);

Listing 3: Code snippet of lud. Array m reads the input file and
then is passed for kernel computation.

mtrans There are two arrays in this micro benchmark, the origi-
nal matrix A and the transposed one B, as shown in Listing 2. Both
matrices are shared by all threads. DataPlacer suggests we should
place matrix B into fast memory if there is not enough room for
both, because of the bad locality in matrix B. We optimized the ap-
plication following DataPlacer and observed an 11.51× speedup. In
contrast, placing matrix A (of good locality) into fast memory ob-
tains only a 5.52× speedup, or half the performance gain of placing
matrix B.

lud There are two phases in lud: a file input phase and a ker-
nel computation phase. DataPlacer identifies that there is only one
significant array m, which contains all the matrix data for decom-
position computation. As shown in Listing 3, m is allocated in
create matrix from file and used in lud omp, the parallel ker-
nel. Array m accounts for ∼18% of total memory accesses. More-
over, m is shared by all threads, so DataPlacer suggests placing it
into fast memory. We apply the optimization according to Data-
Placer’s guidance and achieve a 3.95× speedup for the OpenMP
parallel region when running on eight DSPs.

nw DataPlacer identifies two significant arrays used in nw.
As shown in Listing 4, the two arrays referrence and
input itemsets with the same size, 2.2 MB. Both of them are
used in a parallel region, shared by all threads. These two arrays
account for ∼32% of total memory accesses. With this perfor-
mance insights, DataPlacer recommends placing both arrays into
fast memory, which leads to a 1.5× speedup for the overall pro-
gram.

srad Besides the array highlighted in Figure 4, DataPlacer iden-
tifies six more significant arrays, as shown in Listing 5, which ac-
count for ∼50% of total memory accesses in the program. Threads
share six of these arrays in the following parallel region. Ideally,
DataPlacer recommends placing all seven arrays in the fast mem-
ory. However, due to the limited space, the fast memory cannot hold
all the arrays. With the analysis of DataPlacer, we place five arrays
with the highest F̂ to the fast memory. These arrays are image,

referrence = (int *) malloc( max_rows * max_cols *
sizeof(int) );

input_itemsets = (int *) malloc( max_rows * max_cols
* sizeof(int) );

...
/* process top -left matrix */
#pragma omp parallel for ...
for( idx = 0 ; idx <= i ; idx++){

...
input_itemsets[index]= maximum( input_itemsets[

index -1-max_cols] + referrence[index],
input_itemsets[index -1] - penalty ,
input_itemsets[index -max_cols] - penalty);

}
...
/* process bottom -right matrix */
#pragma omp parallel for ...
for( idx = 0 ; idx <= i ; idx++){

...
input_itemsets[index]= maximum( input_itemsets[

index -1-max_cols] + referrence[index],
input_itemsets[index -1] - penalty ,
input_itemsets[index -max_cols] - penalty);

}

Listing 4: Code snippet of nw. Arrays referrence and
input itemsets are frequently accessed.

dN, dS, dW and c. As for the optimization, the array image needs
to be initialized in the host and then passed to the device. For the
other four arrays, they can be initialized on the device. With this
optimization, we obtain a 1.15× speedup.

Further analysis on speedups Table 4 summarizes the optimiza-
tion to all the benchmarks in HMBench with the guidance of Data-
Placer. In the table, we show the footprint, the number of accesses,
and the number of arrays placed into fast memory under the guid-
ance of DataPlacer. We set two baselines to make the comparison.
Baseline B1 is the default program configuration without utilizing
the fast memory. Baseline B2 utilizes scratchpad memory with a
naive data placement strategy: first come, first served. From the
table, we can see that eight of 13 benchmarks benefit from the
HM optimization and achieve more than 1.10× speedups over B1.
Among them, mtrans and lud obtain significant speedups. How-
ever, benchmarks like kmeans, lavaMD, particlefilter, and
pathfinder obtain nearly no performance improvement. There-
fore, not all kinds of benchmarks can benefit from HM. We discuss
the performance impact of HM to different kinds of benchmarks in
the next section. Moreover, we can see that five out of 13 bench-
marks (mtrans, mmulti, bfs, hotspot, and nw) achieve more
than 1.10× speedup over B2. On average, DataPlacer achieves a
speedup of 1.56× and 1.17× over B1 and B2 baselines, respec-
tively.

6.2 Performance Characterization
In this section, we characterize the performance impact of HM and
identify the workload features that can benefit from HM. We mainly
focus on the performance of parallel regions in these benchmarks.
Common to all the benchmarks that benefit from HM, they have
three features. First, their parallel regions should be large enough
to avoid parallel overhead in OpenMP from overwhelming the ex-



image_ori = (fp*) malloc(sizeof(fp)*image_ori_elem);
...
image = (fp*) malloc(sizeof(fp) * Ne);
...
dN = malloc(sizeof(fp)*Ne); // north direction

derivative
dS = malloc(sizeof(fp)*Ne); // south direction

derivative
dW = malloc(sizeof(fp)*Ne); // west direction

derivative
dE = malloc(sizeof(fp)*Ne); // east direction

derivative
...
c = malloc(sizeof(fp)*Ne); // diffusion

coefficient
...
resize( image_ori , image_ori_rows ,...);
...
#pragma omp parallel for ...
for (j=0; j<Nc; j++)

for (i=0; i<Nr; i++) {
...
// divergence
D = cN*dN[k] + cS*dS[k] + cW*dW[k] + cE*dE[k];
// updates image
image[k] = image[k] + 0.25* lambda*D;
...

}
}

Listing 5: Code snippet of srad. There are seven arrays with
significant accesses in the OpenMP parallel region.

Table 4: The analysis and optimization guidance provided by Data-
Placer. The speedups are measured for all benchmarks running with
eight threads in KeyStone II.

benchmarks footprint
(bytes) accesses #arrays

in HM
Speedup
over B1

Speedup
over B2

mtrans 2.9E6 1.3E7 1 11.51× 2.09×
mmulti 3.7E8 6.4E8 1 2.18× 1.85×
bfs 2.0E6 1.4E8 6 1.31× 1.18×
cfd 6.0E5 1.2E7 2 1.05× 1.03×

hotspot 1.3E7 3.7E8 2 1.17× 1.10×
kmeans 6.7E7 1.4E10 1 1.01× 1.01×
lavaMD 3.3E6 3.7E6 3 1.01× 1.01×
lud 2.1E6 3.1E8 1 3.95× 1.00×
nn 2.1E6 2.8E9 1 1.10× 1.00×
nw 4.7E6 8.8E7 2 1.51× 1.30×

particlefltr 7.4E6 8.0E8 10 1.02× 1.00×
pathfinder 4.0E6 4.0E8 1 1.01× 1.06×
srad 1.0E7 1.2E9 5 1.15× 1.02×

Geo.mean / / / 1.56 × 1.17×

ecution time. For example, the parallel region in lud accounts for
almost 100% of the program execution time, so our optimization
shows a significant speedup. Second, parallel regions have reason-
able memory footprints and accesses. Third, benchmarks have hot
arrays, whose placement in the HM can benefit a large number of
memory accesses. For example, lud, nw, and srad have hot ar-
rays; placing them in HM can benefit 18-50% of the total memory
accesses.

However, as shown in Table 4, there are benchmarks having
little performance improvement with HM optimization. With the

help of DataPlacer, we obtain the benchmark characteristics that
may not benefit from HM.

• Small footprints. If the memory footprint is small, all data can
be loaded into KeyStone II’s L1 and L2 caches, so optimization
does not help. For example, cfd has less than 1MB footprints
that can fit into the hardware-managed L2 cache. Thus, the
speedup for cfd is trivial.

• Streaming access patterns. If a benchmark has a streaming
access pattern, loading data into HM does not benefit from
many reuses. For example, lavaMD has a streaming access
pattern (fp ≈ acc); optimizing it shows nearly no speedup.

• Large footprint with a uniform access pattern. If all arrays in a
benchmark are uniformly accessed, placing a small number of
arrays in the fast HM layers does not significantly improve the
performance. For example, kmeans has a large footprint with
an uniform access pattern. Placing only a small subset of data
into HM leads to nearly no speedup.

In addition to the performance, HM can improve program scal-
ability. We evaluate strong scaling 1 of all benchmarks in HM-
Bench. Most of the benchmarks have slightly better scalability
when optimized with HM. The reason is that MSMC has much
larger bandwidth than DDR in KeyStone II, so contentions in mem-
ory bandwidth can be reduced with the use of MSMC.

6.3 Power Characterization
We measure the power consumed by each application on a TI
evaluation board that features one Keystone 66AK2H SoC, running
with 1, 2, 4 and 8 DSP cores. Without a convenient way to tap into
the power rails for the DSP and memory, we measure the board-
level power consumption, by sampling the voltage and current with
an external digital multimeter, Agilent 34450A. When the board is
idle (no workload on CPU and DSP), we measure the board power
as the baseline; when workload is being executed, we sample the
board power. We repeatedly run each benchmark multiple times to
minimize the measurement errors introduced by the system noise.
We report the workload energy consumption by integrating the
power over time.

Figure 5 compares the energy consumption of the whole system
when running the original (without using MSMC) and optimized
benchmarks. As shown in the figure, the optimizations with HM
for HMBench always reduce energy consumption. We can see that
seven benchmarks have more than 20% energy reduction due to our
HM optimization. It is worth noting that some benchmarks, such
as cfd, kmeans and particlefilter, do not obtain speedups
with the utilization of fast HM, but they obtain nontrivial energy
reduction, 9-18%.

Due to the design limitation of the evaluation board, its static
power is known to be much higher than that of a production de-
vice. To further highlight our efficiency benefit, we compare the
dynamic energy consumption, which is computed as the difference
between the measured energy and the baseline energy on chip. Fig-
ure 6 shows the measurement results: most of the benchmarks have
significant reduction in energy consumption, more than 2× on aver-
age. We further notice that nn and pathfinder after optimization
consume more dynamic energy (Figure 6), but less overall energy
(Figure 5). The reason is that the execution time reduction of these
benchmarks saves a significant amount of static energy, which sur-
passes the dynamic energy increment.

1 Strong scaling means that the problem size is constant and the number of
cores increases.
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Figure 5: Comparison of whole-system energy consumption be-
tween baseline and optimized benchmarks running with eight
threads. The vertical axis indicates the energy consumption, mea-
sured in Joules.

J 

0

5

10

15

20

25

30

35
baseline

optimized

Figure 6: Comparison of dynamic energy consumption between
baseline and optimized benchmarks running with eight threads. The
vertical axis indicates the energy consumption, measured in Joules.

6.4 Takeaways from Experimenting KeyStone II
With the evaluation of a benchmark suite running on a real system,
KeyStone II, we identify that HM can benefit both performance
and power consumption for many, but not all, applications. A per-
formance tool, like DataPlacer, is necessary to guide the use of HM
for the best performance.

However, we cannot further characterize HM’s impact in perfor-
mance and energy with hardware performance events on KeyStone
II. Such hardware events include L1/L2 cache accesses/misses and
MSMC accesses. The reason is that DSPs on KeyStone II lack of
performance counters to record such events. Without this informa-
tion, we cannot explain some phenomena. For example, we can-
not directly understand DDR contention when scaling benchmarks
to more DSPs. Moreover, we have no idea why nn and pathfinder
consume more dynamic energy with HM optimizations. This work
motivates TI to provide such support in DSPs to better understand
their application behaviors.

7. Limitations with KeyStone II
Our study of HM based on KeyStone II has two limitations. First,
the fast memory (L2 and MSMC) on KeyStone II has a small size

(6 MB), so we need to tune the HMBench inputs with small sizes to
make sure the fast memory can hold a sufficient portion of arrays to
affect the performance. We tried large inputs of HMBench, which
are difficult for us to obtain the performance gains. We expect 8-16
GB fast memory in the emerging architectures, where we foresee
the benefit can be obtained from optimizing HMBench with large
inputs.

Second, we lack the insights of the memory behavior in HM-
based accelerators because there are no performance monitoring
units (PMUs) in DSP. Thus, we cannot precisely explain why sev-
eral HMBench benchmarks fail to obtain speedups with placing
data in the fast memory. As the mainstream CPU architectures will
employ HM in the future, we expect to use CPU’s PMU to collect
rich information to understand the HM performance.

8. Conclusions and Future Work
In conclusion, this paper introduces HMBench and DataPlacer to
study the impact of software-managed heterogeneous memory in a
real system, the TI KeyStone II. HMBench is the first OpenMP
benchmark suite that adopts OpenMP 4.0 standard and works
on heterogeneous architectures. DataPlacer is a profiler to pro-
vide guidance for data placement in different layers of software-
managed cache and memory. Using HMBench and DataPlacer, we
observe the insight that HM plays an important role in both boost-
ing performance and reducing energy consumption. Moreover, we
leverage HMBench and DataPlacer to characterize the performance
gains with HM.

Our future work is twofold. First, we will develop more bench-
marks for HMBench to make it as the standard benchmark suite for
evaluating HM-based systems and compilers. Second, we will ex-
tend DataPlacer to provide low-level guidance for compiler-based
optimization for HM. Such low-level information includes the finer
granularity of data placement on cache lines or pages, instead of
arrays. We believe that optimizations on HM from both high-level
source code transformation and low-level compiler-supported code
generation can achieve the optimal performance.
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[32] A. Sandberg, D. Eklöv, and E. Hagersten. Reducing cache pollution
through detection and elimination of non-temporal memory accesses.
In Proceedings of the 2010 ACM/IEEE International Conference for
High Performance Computing, Networking, Storage and Analysis, SC
’10, pages 1–11, Washington, DC, USA, 2010. IEEE Computer Soci-
ety. ISBN 978-1-4244-7559-9.

[33] S. Steinke, L. Wehmeyer, B.-S. Lee, and P. Marwedel. Assigning
program and data objects to scratchpad for energy reduction. In
Design, Automation and Test in Europe Conference and Exhibition,
2002. Proceedings, pages 409–415. IEEE, 2002.

[34] J. E. Stone, D. Gohara, and G. Shi. Opencl: A parallel programming
standard for heterogeneous computing systems. IEEE Des. Test, 12
(3):66–73, May 2010.

[35] Texas Instruments. 66ak2hx keystone multicore dsp+arm system-on-
chips. http://www.ti.com/lit/ml/sprt651a/sprt651a.pdf, .

[36] Texas Instruments. DSP products website. http://www.ti.com/
lsds/ti/dsp/overview.page, . Last accessed: Dec. 08, 2014.

[37] W. Wei, D. Jiang, S. A. McKee, J. Xiong, and M. Chen. Exploiting
program semantics to place data in hybrid memory. In 2015 Interna-
tional Conference on Parallel Architecture and Compilation (PACT),
pages 163–173, Oct 2015.

http://doi.acm.org/10.1145/774789.774805
http://doi.acm.org/10.1145/774789.774805
http://doi.acm.org/10.1145/2024724.2024937
http://doi.acm.org/10.1145/2024724.2024937
http://www.enterprisetech.com/2014/11/17/enterprises-get-xeon-phi-roadmap/
http://www.enterprisetech.com/2014/11/17/enterprises-get-xeon-phi-roadmap/
https://www.cs.virginia.edu/stream
https://www.cs.virginia.edu/stream
http://doi.acm.org/10.1145/1375634.1375640
http://doi.acm.org/10.1145/1375634.1375640
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.ti.com/lit/ml/sprt651a/sprt651a.pdf
http://www.ti.com/lsds/ti/dsp/overview.page
http://www.ti.com/lsds/ti/dsp/overview.page

	Introduction
	Related Work
	Testbed Description and Motivation
	Design and Implementation of HMBench
	Benchmark Description
	Simple Benchmark Implementation
	Limitation of HMBench Implementation

	Design and Implementation of DataPlacer
	Basic Methodology of DataPlacer
	Refined Methodology of DataPlacer
	DataPlacer Output

	Evaluation
	Optimizing HMBench on KeyStone II
	Performance Characterization
	Power Characterization
	Takeaways from Experimenting KeyStone II

	Limitations with KeyStone II
	Conclusions and Future Work

