
StreamBox: Modern Stream Processing on a Multicore Machine

Hongyu Miao1, Heejin Park1, Myeongjae Jeon2,
Gennady Pekhimenko2, Kathryn S. McKinley3, and Felix Xiaozhu Lin1

1Purdue ECE 2Microsoft Research 3Google

Abstract

Stream analytics on real-time events has an insatiable de-
mand for throughput and latency. Its performance on a
single machine is central to meeting this demand, even in
a distributed system. This paper presents a novel stream
processing engine called StreamBox that exploits the
parallelism and memory hierarchy of modern multicore
hardware. StreamBox executes a pipeline of transforms
over records that may arrive out-of-order. As records ar-
rive, it groups the records into ordered epochs delineated
by watermarks. A watermark guarantees no subsequent
record’s event timestamp will precede it.

Our contribution is to produce and manage abun-
dant parallelism by generalizing out-of-order record pro-
cessing within each epoch to out-of-order epoch pro-
cessing and by dynamically prioritizing epochs to opti-
mize latency. We introduce a data structure called cas-
cading containers, which dynamically manages concur-
rency and dependences among epochs in the transform
pipeline. StreamBox creates sequential memory layout
of records in epochs and steers them to optimize NUMA
locality. On a 56-core machine, StreamBox processes
records up to 38 GB/sec (38M Records/sec) with 50 ms
latency.

1 Introduction

Stream processing is a central paradigm of modern data
analytics. Stream engines process unbounded numbers
of records by pushing them through a pipeline of trans-
forms, a continuous computation on records [3]. Records
have event timestamps, but they may arrive out-of-order,
because records may travel over diverse network paths
and computations on records may execute at different
rates. To communicate stream progression, transforms
emit timestamps called watermarks. Upon receiving a
watermark wts, a transform is guaranteed to have ob-
served all prior records with event time ≤ ts.

Most stream processing engines are distributed be-
cause they assume processing requirements outstrip the
capabilities of a single machine [38, 28, 32]. How-
ever, modern hardware advances make a single multi-
core machine an attractive streaming platform. These ad-
vances include (i) high throughput I/O that significantly
improves ingress rate, e.g., Remote Direct Memory Ac-
cess (RDMA) and 10Gb Ethernet; (ii) terabyte DRAMs
that hold massive in-memory stream processing state;
and (iii) a large number of cores. This paper seeks to
maximize streaming throughput and minimize latency on
modern multicore hardware, thus reducing the number of
required machines to process streaming workloads.

Stream processing on a multicore machine raises three
major challenges. First, the streaming engine must ex-
tract parallelism aggressively. Given a set of trans-
forms {d1,d2, · · · ,dn} in a pipeline, the streaming en-
gine should exploit (i) pipeline parallelism by simultane-
ously processing all the transforms on different records
in the data stream and (ii) data parallelism on all the
available records in a transform. Second, the engine
must minimize thread synchronization while respecting
dependences. Third, the engine should exploit the mem-
ory hierarchy by creating sequential layout and minimiz-
ing data copying as records flow through various trans-
forms in the pipeline.

To address these challenges, we present StreamBox,
an out-of-order stream processing engine for multicore
machines. StreamBox organizes out-of-order records
into epochs determined by arrival time at pipeline
ingress and delimited by periodic event time watermarks.
It manages all epochs with a novel parallel data struc-
ture called cascading containers. Each container man-
ages an epoch, including its records and end watermark.
StreamBox dynamically creates and manages multiple
inflight containers for each transform. StreamBox links
upstream containers to their downstream consuming con-
tainers. StreamBox provides three core mechanisms:

(1) StreamBox satisfies dependences and transform

Authors’ version. Last update: October 10, 2017

correctness by tracking producer/consumer epochs,
records, and watermarks. It optimizes throughput and la-
tency by creating abundant parallelism. It populates and
processes multiple transforms and multiple in progress
containers per transform. For instance, when watermark
processing is a long latency event, StreamBox is not
stalled, because as soon as any subsequent records arrive,
it opens new containers and starts processing them.

(2) StreamBox elastically maps software parallelism
to hardware. It binds a set of worker threads to cores.
(i) Each thread independently retrieves a set of records
(a bundle) from a container and performs the transform,
producing new records that it deposits to a downstream
container(s). (ii) To optimize latency, it prioritizes the
processing of containers with timestamps required for
the next stream output. As is standard in stream pro-
cessing, outputs are scoped by temporal windows that are
scoped by watermarks to one or more epochs.

(3) StreamBox judiciously places records in memory
by mapping streaming access patterns to the memory ar-
chitecture. To promote sequential memory access, it or-
ganizes pipeline state based on the output window size,
placing records in the same windows contiguously. To
maximize NUMA locality, it explicitly steers streams to
flow within local NUMA nodes rather than across nodes.

We evaluate StreamBox on six benchmarks with a 12-
core and a 56-core machines. StreamBox scales well up
to 56 cores, and achieves high throughput (millions of
records per second) and low latency (tens of millisec-
onds) on out-of-order records. On the 56-core system,
StreamBox reduces latency by a factor of 20 over Spark
Streaming [38] and matches the throughput of results of
Spark and Apache Beam [3] on medium-size clusters of
100 to 200 CPU cores for grep and wordcount.

The full source code of StreamBox is available at
http://xsel.rocks/p/streambox.

2 Stream model and background

This section describes our out-of-order stream process-
ing model and terminology, summarized in Table 1.

Streaming pipelines A stream processing engine re-
ceives one or more streams of records and performs a se-
quence of transforms D = {d1,d2, · · · ,dn} on the records
R. Each record rts ∈ R has a timestamp ts for tempo-
ral processing. A record has an event timestamp defined
by its occurrence (e.g., when a sensor samples a geoloca-
tion). Ingress of a record to the stream engine determines
its arrival timestamp.

Out-of-order streaming Because data sources are di-
verse, records travel different paths, and transforms op-
erate at different rates, records may arrive out-of-order at
the stream processing engine or to individual transforms.

Table 1: Terminology

Term Definition

Stream An unbounded sequence of records
Transform A computation that consumes and produces streams
Pipeline A dataflow graph of transforms
Watermark A special event timestamp for marking stream progression
Epoch A set of records arriving between two watermarks
Bundle A set of records in an epoch (processing unit of work)
Evaluator A worker thread that processes bundles and watermarks
Container Data structure that tracks watermarks, epochs, and bundles
Window A temporal processing scope of records

To achieve low latency, the stream engine must contin-
uously process records and thus cannot stall waiting for
event and arrival time to align. We adopt the out-of-order
processing (OOP) [27] paradigm based on windows to
address this challenge.

Watermarks and stream epochs Ingress and trans-
forms emit strictly monotonic event timestamps called
watermarks wts, as exemplified in Figure 1(a). A wa-
termark guarantees no subsequent records will have an
event time earlier than ts. At ingress, watermarks de-
limit ordered consecutive epochs of records. An epoch
may have records with event timestamps greater than the
epoch’s end watermark due to out-of-order arrival. The
stream processing engine may process records one at a
time or in bundles.

We rely on stream sources and transforms to cre-
ate watermarks based on their knowledge of the stream
data [2, 3]. We do not inject watermarks (as does prior
work [7]) to force output and manage buffering.

Pipeline egress Transforms define event-time windows
that dictate the granularity at which to output results. Be-
cause we rely on watermarks to define streaming pro-
gression, the rate of egress is bounded by the rate of wa-
termarks, since a transform can only close a window af-
ter it receives a watermark. We define the output delay
in a pipeline from the time it first receives the watermark
wts that signals the completion of the current window to
the moment when it delivers the window results to the
user. This critical path is implicit in the watermark times-
tamps. It includes processing any remaining records in
epochs that precede wts and processing wts itself.

Programming model We use the popular model from
timely dataflow [30], Google dataflow [3], and others. To
compose a pipeline, developers declare transforms and
define dataflows among transforms. This is exemplified
by the following code that defines a pipeline for Win-
dowed Grep, one benchmark used in our evaluation (§9).

// 1. Declare transforms
Source <string > source (/* config info */);
FixedWindowInto <string > fwi(seconds (1));
WindowedGrep <string >wingrep (/* regexp */);
Sink <string > sink();

// 2. Create a pipeline
Pipeline* p = Pipeline :: create ();

http://xsel.rocks/p/streambox

p->apply(source); //set source

// 3. Connect transforms together
connect_transform(source , fwi);
connect_transform(fwi , wingrep);
connect_transform(wingrep , sink);

// 4. Evaluate the pipeline
Evaluator eval (/* config info */);
eval.run(p); // run the pipeline

Listing 1: Pseudo code for Windowed Grep pipeline

To implement a transform, developers must define
the following functions, as shown in Figure 1(b): (i)
ProcessRecord(r) consumes a record r and may emit
derived records. (ii) ProcessWm(w) consumes a water-
mark w, flushes the transform’s internal state, and may
emit derived records and watermarks. ProcessWm(w) is
always invoked only after ProcessRecord(r) consumes
all records in the current epoch.

3 Design goals and criteria

We seek to exploit the potential of modern multicore
hardware with its abundant hardware parallelism, mem-
ory capacity, and I/O bandwidth for high throughput and
low latency. A key contribution of this paper is exploiting
epoch parallelism by concurrently processing all avail-
able epochs in every transform, in addition to pipeline
parallelism. Epoch parallelism generalizes the idea of
processing the records in each epoch out-of-order by pro-
cessing epochs out-of-order. The following two invari-
ants ensure correctness:
(1) Records respect epoch boundaries Each epoch

is defined by a start watermark wstart and an end water-
mark wend that arrive at ingress at time start and end, and
consists only of records rat that arrive at ingress at time
at, with start < at < end. Once an ingress record rat is
assigned an epoch, records never changed epochs, since
this change might violate the watermark guarantee.
(2) Watermark ordering A transform D may only

consume wend after it consumes all the records r in the
epoch. This invariant transitively ensures that water-
marks and epochs are processed in order, and is criti-
cal to pipeline correctness, as it enforces the progression
contract on ingress and between transforms.

Our primary design goal is to minimize latency by
exploiting epoch and pipeline parallelism with minimal
synchronization while maintaining these invariants. In
particular, our engine processes unconsumed records us-
ing all available hardware resources regardless of record
ordering, delayed watermarks, or epoch ordering. We
further minimize latency by exploiting the multicore
memory hierarchy (i) by creating sequential memory lay-
out and minimizing data movement, and (ii) by mapping
streaming data flows to the NUMA architecture.

Process
Record()

ProcessWm()

internal state

flushbundles

0:100:20 0:20
0:11 0:050:22 0:12

0:10
0:18 0:05 0:110:12 0:18D

(a) A logic view of a transform, which consumes and

produces out-of-order records as delimited by watermarks

An epoch
Start

(b) A transform in StreamBox. It is executed to consume and

produce records belonging to multiple epochs in parallel.

Transform

A record

End

Watermarks

Figure 1: A transform in a StreamBox pipeline.

4 StreamBox overview

A StreamBox pipeline includes multiple transforms and
each transform has multiple containers. Each container
is linked to a container in a downstream transform or
egress. Containers form a network pipeline organiza-
tion, as depicted in Figure 2. Records, derived records,
and watermarks flow through the network by following
the links. A window consists of one or more epochs.
The window size determines the output aggregation and
memory layout, but otherwise does not influence how
StreamBox manages epochs.

This dataflow pipeline network is necessary to exploit
parallelism because parallelism emerges dynamically as
a result of variation in record arrival times and the vari-
ation in processing times of individual records and wa-
termarks for different transforms. For instance, records,
based on their content, may require variable amounts of
processing. Furthermore, it is typically faster to process
a record than a watermark. However, exposing this abun-
dant record processing parallelism and achieving low la-
tency require prioritizing containers on the critical path
through the network. StreamBox prioritizes records in
containers with timestamps preceding the pipeline’s up-
coming output watermark. Otherwise, the scheduler pro-
cesses records from transforms with the most open con-
tainers. StreamBox thus dynamically adds parallelism to
the bottleneck transforms of the network to optimize la-
tency.

StreamBox implements three core components:

Elastic pipeline execution StreamBox dynamically al-
locates worker threads (evaluators) from a pool to trans-
forms to maximize CPU utilization. StreamBox pins
each evaluator to a CPU core to limit contention. During
execution, StreamBox dispatches pending records and
watermarks to evaluators. An evaluator executes trans-
form code (i.e., ProcessRecord() or ProcessWm()) and

produces new records and watermarks that further drive
the execution of downstream transforms.

When dispatching records, StreamBox packs them
into variable sized bundles for processing to amortize
dispatch overhead and improve throughput. Bundles dif-
fer from batches in many other streaming engines [38,
32, 7]. First, bundle size is completely orthogonal to
the transform logic and its windowing scheme. Stream-
Box is thus at liberty to vary bundle size dynamically
per transform, trading dispatch latency for overhead.
Second, dynamically packing records in bundles does
not delay evaluators and imposes little buffering delay.
StreamBox only produces sizable bundles when down-
stream transforms back up the pipeline.

Cascading containers Each container belongs to a
transform and tracks one epoch, its state (open, process-
ing, or consumed), the relationship between the epoch’s
records and its end watermark, and the output epoch(s)
in the downstream consuming transform(s). Each trans-
form owns a set of containers for its current input epochs.
With this container state, executers may concurrently
consume and produce records in all epochs without
breaking or relaxing watermarks.

Pipeline state management StreamBox places records
belonging to the same temporal windows (one or more
adjacent epochs) in contiguous memory chunks. It
adapts a bundle’s internal organization of records, cater-
ing to data properties, e.g., the number of values per
key. StreamBox steers bundles so that they flow mostly
within their own NUMA nodes rather than across nodes.
To manage transform internal state, StreamBox instan-
tiates a contiguous array of slides per transform, where
each slide holds processing results for a given event-time
range, e.g., a window. Evaluators operate on slide ar-
rays based on window semantics, which are independent
of the epoch tracking mechanism – cascading contain-
ers. The slide array realization incurs low synchroniza-
tion costs under concurrent access.

5 Cascading containers

Cascading containers track epochs and orchestrate con-
current evaluators (i) to consume all of an epoch’s
records before processing its end watermark, (ii) to
consume watermarks in stream order, and (iii) to emit
records derived from an upstream epoch into the corre-
sponding downstream epoch(s).

Figure 2 shows the cascading container design. Each
transform owns a set of input stream containers, one for
each potential epoch. When StreamBox creates a con-
tainer uc, it creates one downstream container dc (or
more) for its output in the downstream transform(s) and
links to it, causing a cascade of container creation. It

09:00

04:00

00:00

25:00 15:0020:00

(Upstream)

Window

Aggregation

Sink

OldestNewest

1

Mapper

Unclaimed

bundle

Retrieved bundle

(not consumed yet)

3

A2 A1A3

S4 S3 S2 S1

M1

W1

(Downstream)

2

W2

Flow of bundles

& watermarks

Figure 2: An overview of cascading containers

OPEN

9:00

WM
ASSIGNED

WM
RETRIEVED

WM
CONSUMED

WM_CANCELED

(DESTROY)

(INIT)

Figure 3: The life cycle of a container

puts all records and watermarks derived from the trans-
form on uc into this corresponding downstream con-
tainer dc. All these containers form a pipeline network.
As stream processing progresses, the network topology
evolves. Evaluators create new containers, establish links
between containers, and destroy consumed containers.

5.1 Container implementation

StreamBox initializes a container Down when the trans-
form receives the first input record or bundle of an epoch.
Each container includes any unclaimed bundles of the
epoch. An unconsumed counter tracks the number of
bundles that ever entered the container but are not fully
consumed. After processing a bundle, Down deposits de-
rived output bundles in the downstream container and
then updates the unconsumed counter.

Container state StreamBox uses a container to track an
epoch’s life cycle as follows and shown in Figure 3.

OPEN Containers are initially empty. An open container
receives bundles from the immediate upstream Dup.
The owner Down processes the bundles simultaneously.

WM ASSIGNED When Dup emits an epoch watermark
w, it deposits w in Down’s dependent container. Even-
tually Down consumes all bundles in the container and
the unconsumed counter drops to zero, at which point
Down retrieves and processes the end watermark.

WM RETRIEVED A container enters this state when
Down starts processing the end watermark.

WM CONSUMED After Down consumes the end water-
mark, it guarantees that it has flushed all derived state
and the end watermark to the downstream container
and Down may be destroyed.

WM CANCELLED Dup chooses not to emit the end wa-
termark for the (potential) epoch. Section 5.2 de-
scribes how we support windowing transforms by can-
celling watermarks and merging containers.

Lock-free container processing Containers are lock-
free to minimize synchronization overhead. We instanti-
ate the end watermark as an atomic variable that enforces
acquire-release memory order. It ensures that Down ob-
serves all Dup evaluators’ writes to the container’s un-
claimed bundle set before observing Dup’s write of the
end watermark. The unclaimed bundle set is a concurrent
data structure that aggressively weakens the ordering se-
mantics on bundles for scalability. Examples of other
such data structures include non-linearizable lock-free
queues [13] and relaxed priority queues [4]. We further
exploit this flexibility to make the bundle set NUMA-
aware, as discussed in Section 7.1.

5.2 Single-input transforms
If a transform has only one input stream, all its input
epochs – and therefore the containers – are ordered, even
though records are not.

Creating containers The immediate upstream container
Dup creates downstream containers on-demand and links
to them. Figure 2 1 shows an example of container cre-
ation. When StreamBox processes the first bundle in A3,
it creates S4 and any missing container that precedes it,
in this case S3, and links A3 to S4 and A2 to S3. To make
concurrent growth safe, StreamBox instantiates down-
stream links and containers using an atomic variable with
strong consistency. Subsequent bundle processing uses
the instantiated links and containers.

Processing To select a bundle to process, evaluators
walk the container list for a transform, starting from
the oldest container to the youngest, since the oldest
container holds the most urgent work for state exter-
nalization. If an evaluator encounters containers in the
wm consumed state, it destroys the container. Otherwise,

1. it retrieves an unclaimed bundle. If none exists,
2. it retrieves the end watermark when (i) the water-

mark is valid (i.e., the container has wm assigned),
and (ii) all bundles are consumed (unconsumed ==
0), and (iii) all watermarks in the preceding contain-
ers of Down are consumed.

3. If the evaluator fails to retrieve a bundle or wa-
termark from this container, it moves to the next
younger container on Down’s list.

L

R

Ddown

0:300:40 0:100:20

Join L0’ R0’L1’ R1’

0:000:100:100:20

Joint watermarks seen by Ddown

after consuming each epoch

L0L1

R1 R0

partial watermarks

L

R

Ddown
Join

partial watermarks

(a) A logic view of Join. The processing of two input streams

progress independently, resulting in interleaved epochs in output

(b) Arbitrarily ordering Join’s output epochs relaxes watermarks

A record

2

1

3

Figure 4: A logic diagram of OOP temporal join

Figure 2 shows an example. An evaluator starts from
the oldest container W1 to find work 2 . Because W1
is in WM RETRIEVED (all bundles are consumed and the
end watermark is being processed), the worker moves on
to W2. Because all bundles in W2 are consumed but
the end watermark is available, it retrieves the watermark
(09:00) for processing. Section 6 describes how we pri-
oritize transforms in the container network.

Merging containers for windowing For each input con-
tainer, we create a potential downstream container, ex-
pecting each input epoch will correspond to an output
epoch. However, when a transform D performs win-
dowing operations, it often must wait for multiple wa-
termarks to correctly aggregate records. In this case,
we merge containers. Figure 2 3 shows an example
of Aggregation on a 10-min window. After consuming
container A1 with its 04:00 watermark, the Aggregation
transform cannot yet emit a watermark and retire its cur-
rent window (0:00-10:00). Our solution is to cancel wa-
termarks and merge the downstream output containers
until the windowing logic, which uses event time, is sat-
isfied. This operation is cheap. StreamBox cancels wa-
termarks by simply marking them wcancel . As evaluators
walk container lists and observe wcancel , they logically
treat adjacent containers as one, e.g., S2 and S3. When
the transform receives a watermark ts ≥ 10, it emits the
watermark which will eventually close the container.

5.3 Multi-input transforms

A multi-input transform, such as temporal Join and
Union, takes multiple input streams and produces one
stream. Figure 4 shows an example of out-of-order tem-
poral join [27]. The left and right input streams progress
independently (they share D join’s internal state). The

output stream consists of interleaved epochs resulting
from processing either input stream. These epochs are
delimited by partial watermarks (wL or wR), which are
also solely derived from the input streams. The down-
stream Ddown derives a joint watermark as min(w′L,w

′
R),

where w′L and w′R are the most recent left and right partial
watermarks.
The case for unordered containers A multi-input trans-
form, unlike single-input transforms, cannot always have
its downstream containers arranged on an ordered list
(§5.2) because an optimal ordering of output epochs de-
pends on their respective end (partial) watermarks. On
the other hand, arbitrarily ordering output epochs may
unnecessarily relax watermarks and delay watermark
processing (§2).

Figure 4(b) shows an example of arbitrarily order-
ing output epochs. While processing open input epochs
L0/L1 and R0/R1 1 , StreamBox arbitrarily orders
the corresponding output as L1’→R1’→L0’→R0’ with-
out knowing the end watermarks. Later, these output
epochs eventually receive their partial end watermarks
2 . Upon consuming them, Ddown derives joint water-

marks based on its subsequent observations of partial
watermarks 3 . Unfortunately, the joint watermark is
more relaxed than the partial watermarks. For instance,
the partial watermark 00:30 of R0’ guarantees that all
records in R0’ are later than 00:30. However, from the
derived joint watermark, Ddown only knows that they are
later than 00:00. Relaxed watermarks propagate to all
downstream transforms. To tighten a joint watermark,
StreamBox should have placed L0’ and L1’ (and per-
haps more subsequent left epochs) before R0’ and R1’.
However, it cannot make that decision before observing
all these partial watermarks!

In summary, StreamBox must achieve two objectives
in tracking epochs for multi-input transforms. (1) It must
track output epochs with corresponding containers for
epoch parallelism. (2) It must defer ordering these con-
tainers until it determines their end watermarks.
Solution StreamBox maintains unordered containers for
a multi-input transform’s output epochs and their down-
stream counterparts. Once StreamBox determines the or-
dering of one epoch, it appends the corresponding con-
tainer to an ordered list and propagates this change down-
stream. Figure 5 shows an example.
• D join owns two ordered container lists L and R.
• D1, the immediate downstream transform of D join,
owns three ordered lists of containers. L1 and R1 are
derived from D join’s L and R, respectively. S1 holds
merged containers from L1 and R1.
• With D2 downstream of D1, D2 owns an unordered set
U and an ordered list S2.

As D join processes its input streams L and R, it de-

L

R

(Upstream)

D2

DJoin

L1

R1

S2

S1

U

3

2

4

(to downstream)

D1

11

C2

C1

(Downstream)

Figure 5: Unordered containers for Join and its down-
stream. For brevity, container watermarks are not drawn

posits the derived bundles and watermarks to containers
on L1, R1, and S1 1 . D1 selects the oldest container
C1 on L1 and R1 to process and it appends C1 to S1 2 .
Processing C1, deposits records in container C2 (follow-
ing the down link), which subsequently produces records
in containers at S2 3 and beyond 4 .

5.4 Synchronized access to containers

In the cascading containers network, the concurrent eval-
uators dynamically modify the network topology by cre-
ating, linking, and destroying containers. Although the
most frequent container operations, such as processing
records, are lock-free as described in Section 5.1, mod-
ifying the container network must be synchronized. We
carefully structure network modifications in reader and
writer paths and synchronize them with one readers-
writer lock for each container list. To retrieve work,
an evaluator holds the container list’s reader lock while
walking the list. If the evaluator needs to modify the list
(e.g., to destroy a container), it atomically upgrades the
reader lock to a writer lock.

6 Pipeline scheduling

A pipeline’s latency depends on how fast the engine ex-
ternalizes the state of the current window. To this end,
StreamBox’s scheduler prioritizes upcoming state exter-
nalization.

StreamBox maintains a global notion of the next ex-
ternalization moment (NEM). The upcoming windowed
output requires processing of all bundles and watermarks
with timestamps prior to NEM. After each state external-
ization, StreamBox increments the NEM monotonically
based on a prediction. In the common case where exter-
nalization is driven by temporal windows, the engine can

accurately predict NEM as the end of the current win-
dow. In case windowing information is unavailable, the
engine may predict NEM based on historical externaliza-
tion timing. Mispredicting NEM may increase the output
delay but will not affect correctness.

NEM guides work prioritization in StreamBox. All
evaluators independently retrieve work (i.e., bundles or
watermarks) from cascading containers. By executing
StreamBox’s dispatch function, an evaluator looks for
work by traversing container lists from the oldest to the
youngest, starting from the top of the network. It priori-
tizes bundles in containers with timestamps that precede
NEM.

Watermark processing is on the critical path of state
externalization and often entails substantial amount of
work, e.g., reduction of the window state. To acceler-
ate watermark processing, StreamBox creates a special
watermark task queue. Watermark tasks are defined as
lambda functions. StreamBox gives these tasks higher
priority and executes them with the same set of evalua-
tors – without oversubscribing the CPU cores. An eval-
uator first processes watermark tasks. After completing
a task, evaluators return to the dispatcher immediately.
Evaluators never wait on a synchronization barrier inside
the watermark evaluator. This on-demand, extra paral-
lelism accelerates watermark evaluation.

7 Pipeline state management

The memory behavior of a stream pipeline is deter-
mined by the bundles of records flowing among trans-
forms and the transforms’ internal states. To manage this
state, StreamBox targets locality, NUMA-awareness,
and coarse-grained allocation/free. We decouple state
management from other key aspects, including epoch
tracking, worker scheduling, and transform logic.

7.1 Bundles
Adaptive internal structure StreamBox adaptively
packs records into bundles for processing.
StreamBox seeks to (i) maximize sequential access,

(ii) minimize data movement, and (iii) minimize the per-
record overhead incurred by bundling.

A bundle stores a “flat” sequence of records sequen-
tially in contiguous memory chunks. This logical record
ordering supports grouping records temporally in epochs
and windows, and by keys. It achieves both because
temporal computation usually executes on all the keys
of specific windows, rather than on specific keys of all
windows. This choice contrasts to prior work that sim-
ply treats <window, key> as a new key.

To minimize data movement, StreamBox adapts bun-
dle internals to the transform algorithm. For instance,

given a Mapper that filters records, the bundles include
both records and a bitmap, where each bit indicates the
presence of a record, so that a record can be logically fil-
tered by simply toggling a bit. Databases commonly use
this optimization [7] as well.

StreamBox adapts bundle internals based on input
data properties. The performance of keyed transforms,
i.e., those consuming key-value pairs, is sensitive to the
physical organization of these values. If each key has a
large number of values, a bundle will hold a key’s values
using an array of pointers, each pointing to an array of
values. This choice makes combining values produced
by multiple workers as cheap as copying a few pointers.
If each key only has a few values, StreamBox holds them
in an array and copies them during combining. To learn
about the input data, StreamBox samples a small fraction
of it.
NUMA-aware bundle flows StreamBox explicitly
steers bundles between transforms for NUMA locality
by maximizing the chance that a bundle is both produced
and consumed on the same NUMA node.

Each bundle resides in memory from one NUMA node
and is labeled with that node. When an evaluator pro-
cesses a container, it prefers unclaimed bundles labeled
with its same NUMA node. It will process non-local
bundles only when bundles from the local node are all
consumed. To facilitate this process, an evaluator always
allocates memory on its NUMA node, and later deposits
the new bundle to the NUMA node of the downstream
container. Notice that the NUMA-aware scheduling only
affects the order among bundles within a container. It
does not starve important work, e.g., containers to be dis-
patched by the next externalization moment.

7.2 Transform Internal State

StreamBox organizes a transform’s internal state as an
array of temporal slides, forming a slide. Each slide cor-
responds to a window (for fixed windows) or a window’s
offset (for sliding windows). Note that the size of a slide
is independent of an epoch size.

To access a transform’s state, an evaluator operates
on a range of slides: updating slides in-place for accu-
mulating processing results; fetching slides for closing
a window; and retiring slides for state flushing. Since
concurrent evaluators frequently access the slide arrays,
we need to minimize locking and data movement. To
achieve this goal, StreamBox grows the array on-demand
and atomically. It only copies pointers when fetching
slides. It decouples the logical retirement of slides from
their actual, likely expensive destruction. To support
concurrent access to a single slide, the current Stream-
Box implementation employs off-the-shelf concurrent
data structures, as discussed below.

56CM Dell PowerEdge R930

4x14 Xeon E7-4850v4 “Broadwell”, 256GB DRAM, Linux 4.4

12CM Dell PowerEdge R720

2x6 Xeon E5-2630v2 “Ivy Bridge”, 256GB DRAM, Linux 4.4

Table 2: Test platforms used in experiments

8 Implementation

We implement StreamBox in 22K SLoC of C++11. The
implementation extensively uses templates, static poly-
morphism, and C++ smart pointers. We implemented
Windowing, GroupBy, Aggregation, Mapper, Reducer,
and Temporal Join as our library transforms. Our scal-
able parallel runtime relies on the following scalable low-
level building blocks.
C++ libraries We use boost [20] for timekeeping and
locks, Intel TBB [22] for concurrent hash tables, and
Facebook folly [17] for optimized vectors and strings.
Folly improves the performance of some benchmarks
by 20–30%. For scalable memory allocation, we
use jemalloc [12], which scales much better than
std::alloc and TBB [23] on our workloads.
Concurrent hash tables are hotspots in most statefull
pipelines. We tested three open-source concurrent hash
tables [22, 18, 17], but they either did not scale to a large
core count or required pre-allocating a large amount of
memory. Despite the extensive research on scalable hash
tables [26, 6], we needed to implement an internally
partitioned hash table. We wrapped TBB’s concurrent
hash map. This simple optimization improves our per-
formance by 20–30%.
Bundle size is an empirical trade off between scheduling
delay and overhead. StreamBox mainly varies bundle
size at pipeline ingress. When the engine is fully busy,
with all records in one ingress epoch, it produces as many
bundles as evaluators, e.g., 56 bundles for 56 evaluators,
to maximize the bundle size without starving any thread.
The largest bundle size is around 80K records. When
the ingress slows down, the system shrinks bundle sizes
to reduce latency. We empirically determine that a 2×
reduction in bundle size balances a 10% drop in ingress
data rate. We set the minimal bundle size at 1K records
to avoid excessive per-record overhead.

9 Evaluation

Methodology We evaluate StreamBox on the two mul-
ticore servers, summarized in Table 2. 56CM is a high-
end server that excels at real-time analytics and 12CM
is a mid-range server. Although 100 Gb/s Infiniband
(RDMA) networks are available, our local network is
only 10 Gb/s. However, 10 Gb/s is insufficient to test
StreamBox and furthermore even if we used Infiniband,

it will directly store stream input in memory. We there-
fore generate ingress streams from memory. We dedi-
cate a small number of cores (1–3) to the pipeline source.
We then replay these large memory buffers pre-populated
with records and emit in-memory stream epochs contin-
uously. We measure the maximum sustained throughput
of up to 38 GB/s at the pipeline source when the pipeline
delay meets a given target.

Benchmarks We use the following benchmarks and
datasets. Unless stated otherwise, each input epoch con-
tains 1 M records and spans 1 second of event time. (1)
Windowed Grep (grep) searches the input text and out-
puts all occurrences of a specific string. We use Amazon
Movie Reviews (8.7 GB in total) [37] as input, a sliding
window of 30 seconds, and 1 second target latency. The
input record size is 1 KB. (2) Word Count (wordcount)
splits input texts into words and counts the occurrences
of each word. We use 954 MB English books [21] as in-
put, a sliding window of 30 seconds, and 1 second target
latency. The input record size is 100 bytes. (3) Tempo-
ral Join (join) has two input streams, for which we ran-
domly generate unique 64-bit integers as keys. The join
window for each record is ± 0.5 seconds. (4) Counting
Distinct URLs (distinct) [32] counts unique URL iden-
tifiers. We use the Yandex dataset [16] with 70 M unique
URLs and a fixed window of 1 second. (5) Network
Latency Monitoring (netmon) [32] groups network la-
tency records by IP pairs and computes the average per
group. We use the Pingmesh dataset [19] with 88 M
records and a fixed window of 1 second. The source
emits 500K records per epoch. (6) Tweets Sentiment
Analysis (tweets) [32] correlates sentiment changes in a
tweet stream to the most frequent words. It correlates re-
sults from two pipelines: one that selects windows with
significant sentiment score changes, and the other that
calculates the most frequent words for each window. We
use a public dataset of 8 million English tweets [10] and
a fixed window of 1 second. This benchmark is the most
complex and uses 8 transforms.

9.1 Throughput and Scalability
This section evaluates the throughput, scalability, and
out-of-order handling of StreamBox, and compares with
existing stream processing systems.
Throughput Figure 6 presents throughput on the y-axis
for the six benchmarks as a function of hardware paral-
lelism on the x-axis and latency as distinct lines. Stream-
Box has high throughput and typically processes millions
of input records per second on a single machine, while
delivering latencies as low as 50 ms. In particular, grep
achieves up to 38 M records per second, which translates
to 38 GB per second. This outstanding performance is
due to low overheads and high system utilization. Profil-

 0

 10000

 20000

 30000

 40000

 4 12 32 56

T
h
ro

u
g
h
p
u
t

K
R

e
c/

s

Cores

Windowed Grep

CM56 (1sec)
CM56 (50ms)
CM12 (1sec)

CM12 (50ms)
 0

 1000

 2000

 3000

 4000

 5000

 4 12 32 56

T
h
ro

u
g
h
p
u
t

K
R

e
c/

s

Cores

Word Count

CM56 (1sec)
CM56 (50ms)
CM12 (1sec)

CM12 (50ms)
 0

 1000

 2000

 3000

 4000

 5000

 4 12 32 56

T
h
ro

u
g
h
p
u
t

K
R

e
c/

s

Cores

Temporal Join

CM56 (1sec)
CM56 (50ms)
CM12 (1sec)

CM12 (50ms)

 0

 500

 1000

 1500

 2000

 4 12 32 56

T
h
ro

u
g
h
p
u
t

K
R

e
c/

s

Cores

Counting Distinct URLs

CM56 (1sec)
CM56 (50ms)
CM12 (1sec)

CM12 (50ms)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 4 12 32 56

T
h
ro

u
g
h
p
u
t

K
R

e
c/

s

Cores

Network Latency Monitoring

CM56 (1sec)
CM56 (500ms)

CM12 (1sec)
CM12 (500ms)

 0

 1000

 2000

 3000

 4000

 5000

 4 12 32 56

T
h
ro

u
g
h
p
u
t

K
R

e
c/

s

Cores

Tweets Sentiment Analysis

CM56 (1sec)
CM56 (500ms)

CM12 (1sec)
CM12 (500ms)

Figure 6: Throughput of StreamBox as a function of hardware parallelism and latency. StreamBox scales well.

 0

 2000

 4000

 6000

4 12 32 56

T
h
ro

u
g
h
p
u
t

K
R
e
c/

s

Cores

0%
20%
40%

(a) wordcount

 0

 200

 400

 600

 800

 1000

4 12 32 56

T
h
ro

u
g
h
p
u
t

K
R
e
c/

s

Cores

0%
20%
40%

(b) netmon

 0

 2000

 4000

 6000

4 12 32 56

T
h
ro

u
g
h
p
u
t

K
R
e
c/

s

Cores

0%
20%
40%

(c) tweets

Figure 7: StreamBox achieves high throughput even
when a large fraction of records arrive out-of-order.

ing shows that all CPU cores have consistently high uti-
lization (> 95%) and that most time is spent performing
transform logic, e.g., processing stream data and manip-
ulating hash tables.
Scalability Figure 6 shows that StreamBox scales well
with core count for most benchmarks on both the 12-core
and 56-core machines. When scalability diminishes in a
few cases beyond 32 cores, as for grep, it is a result of
memory-bound computation saturating the machine.
Out-of-order records By design, StreamBox efficiently
computes on out-of-order records. To demonstrate this
feature, we force a certain percent of records to arrive
early in each epoch, i.e., the event time of these records
is larger than the enclosing epoch’s end watermark. Fig-
ure 7 shows the effect on throughput for 3 benchmarks.
StreamBox achieves nearly the same throughput and la-
tency as in in-order data processing. In particular, the
throughput loss is as small as 7% even with 40% of
records out-of-order. The minor degradation is due to
early-arriving records that accumulate more windows in
the pipeline. We attribute this consistent performance to

(i) out-of-order epoch processing, since each transform
continuously processes out-of-order records without de-
lay, and (ii) prioritizing bundles and watermarks that de-
cide the externalization latency of the current window in
the scheduler.

Comparing to distributed stream engines We first
compare StreamBox with published results of a few pop-
ular distributed stream processing systems and then eval-
uate two of them on our 56-core machine. Most pub-
lished results are based on processing of in-order stream
data. For out-of-order data, they either lack support (e.g.,
no notion of watermarks) or expect transforms to “hold
and sort”, which significantly degrades latency [11, 35].

Compared to existing systems, StreamBox jointly
achieves low millisecond latency and high throughput
(tens of millions of records per second). Very few sys-
tems achieve both. To achieve similar throughput, prior
work uses at least a medium-size cluster with a few hun-
dred CPU cores [28, 38]. For instance, under the 50-
ms target latency, StreamBox’s throughput on 56CM
is 40× greater than StreamScope [28] running on 100
cores. Moreover, even under a 1-second target latency,
StreamBox achieves much higher throughput per core.
StreamBox can process 700K records/sec for grep and
90K records/sec for wordcount per core, which are 4.7×
and 1.5× faster than the per-core processing rate reported
by Spark Streaming on a 100-node cluster with a total of
400 cores.

We further experimentally compare StreamBox with
Spark (v2.1.0) [38] and Apache Beam (v0.5.0, execut-
ing its Direct Runner) [3], on the same machine (56CM).
Note that Beam’s Direct Runner is an unoptimized im-
plementation intended for local prototyping and testing

 0

 2000

 4000

 6000

 8000

4 12 32 56

7K 10K 10K 8K

T
h
ro

u
g

h
p

u
t

K
R

e
c/

s

Cores

StreamBox
Spark Streaming

Beam

Figure 8: StreamBox scales better than Spark and Beam
with wordcount on 56CM, with a 1-second target latency.

 0

 10000

 20000

 30000

 40000

 50000

32 56

T
h
ro

u
g
h
p
u
t

K
R

e
c/

s

Cores

StreamBox
In-order

(a) grep

 0

 2000

 4000

 6000

 8000

32 56

T
h
ro

u
g
h
p
u
t

K
R

e
c/

s

Cores

StreamBox
In-order

(b) wordcount

 0

 1000

 2000

32 56

T
h
ro

u
g
h
p
u
t

K
R

e
c/

s

Cores

StreamBox
In-order

(c) distinct

Figure 9: In-order processing reduces parallelism, scala-
bility, and throughput.

rather than production environments. We verify that they
both utilize all cores. We set the the target latency to
1 second since they cannot achieve 50 ms as Stream-
Box does. Figure 8 shows that StreamBox achieves sig-
nificantly higher throughput (by more than one order of
magnitude) and it scales much better with core count.
Comparing to single-machine streaming engines A
few streaming engines are designed for a single ma-
chine: Oracle CEP [31], StreamBase [34], Esper [14],
and SABER (for CPU+GPU) [24]. With 4 to 16 CPU
cores, they achieve throughput between thousands and a
few million of records per second. None of them reports
to scale beyond 32 CPU cores. In particular, we tested
Esper [14] on 56CM with wordcount. On four cores, Es-
per achieves around 900K records per second, which is
similar to StreamBox with the same core count. How-
ever, we were unable to get Esper to scale even after
applying recommended programming techniques, e.g.,
context partitioning [15]. As the core count increases,
we observed the throughput drops.

In summary, StreamBox achieves better or similar per
core performance than prior work. More importantly,
StreamBox scales well to a large core count even with
out-of-order record arrival.

9.2 Validation of key design features

This section evaluates the performance and scaling con-
tributions of our key design features.

 0

 2000

 4000

 6000

 8000

4 12 32 56

T
h
ro

u
g
h
p
u
t

K
R

e
c/

s

Cores

StreamBox
No-respect

(a) wordcount on 56CM

 0

 2000

 4000

4 12

T
h
ro

u
g
h
p
u
t

K
R

e
c/

s

Cores

StreamBox
No-respect

(b) wordcount on 12CM

Figure 10: When records do not respect epoch bound-
aries, it limits parallelism, scalability, and throughput.

Epoch parallelism for out-of-order processing Epoch
parallelism is fundamental to producing abundant paral-
lelism and exploiting out-of-order processing. We com-
pare with in-order epoch processing by implementing
“hold and sort,” in which each transform waits to process
an epoch until all its records arrive. Note that this in-
order epoch processing leaves out the high cost of sort-
ing records. It processes records within an epoch out-
of-order. Figure 9 shows that in-order epoch processing
reduces throughput by 25% – 87%. Profiling reveals the
reduced parallelism causes poor CPU utilization.
Records must respect epoch boundaries (§3). Stream-
Box enforces the invariant that records respect epoch
boundaries by mapping upstream containers to down-
stream containers (§5). We compare this to an alterna-
tive design where a transform’s output records always
flow into the most recently opened downstream con-
tainer. Records then no longer respect epoch boundaries,
since later records may enter earlier epochs. Violating
the epoch invariant leads to huge latency fluctuations in
watermark externalization, degrading performance. Fig-
ure 10 shows that not respecting epoch boundaries re-
duces throughput by up to 71%.
Prioritized scheduling (§6) Prioritizing containers on
the critical path is crucial to latency and throughput. To
explore its effect, we disable prioritized scheduling such
that evaluators freely retrieve available bundles anywhere
in the pipeline starting from its curent source and sink
container. In this configuration, evaluators tend to rush
into one transform, drain bundles there, and then move to
the next. We confirmed this behavior with profiling. Per-
formance measurements show that the pipeline latency
fluctuates greatly and sometimes overshoots the target la-
tency by a factor of 10.
NUMA-awareness (§7) We find NUMA-awareness es-
pecially benefits memory-bound benchmarks. For exam-
ple, grep without windowing achieves 54 GB/s on 56CM,
which is 12.5% higher than a configuration with NUMA-
unaware evaluators.
Watermark arrival rates. Frequent watermarks lead

 0

 2000

 4000

 6000

10
00

K
10

0K 10
K 1KT

h
ro

u
g
h
p
u
t

K
R

e
c/

s

Records/Epoch

Figure 11: Performance impact of watermark arrival rate
for wordcount on 56CM.

to shorter epochs and more containers, each with fewer
records, thus increasing the maintenance cost of cascad-
ing containers. In general, as shown in Figure 11, con-
tainers are sufficiently lightweight so that frequent wa-
termarks (e.g., 100× more watermarks in 10K record-
s/epoch) result in only a minor performance loss (e.g.,
20%). However, substantial performance degradation
emerges for watermarks at the rate of 1 K records/epoch,
because frequent container creation and destruction incur
too much synchronization.

10 Related work

This section compares StreamBox to prior work that uses
the out-of-order processing (OOP) model, distributed
and single server stream engines, and on exploiting
shared memory for streaming.
OOP stream processing A variety of classic stream-
ing engines focus on processing in-order records with
a single core (e.g., StreamBase [34], Aurora [1], Tele-
graphCQ [9], Esper [14], Gigascope [11], and Nia-
garaST [29]). Li et al. [27] advocate OOP stream pro-
cessing that relies on stream progression messages, e.g.
punctuations, for better throughput and efficiency. The
notion of punctuations is implemented in many modern
streaming engines [3, 7, 28]. These systems do exploit
pipeline and batch parallelism, but they do not exploit
out-of-order processing of epochs to expose and deliver
highly scalable data parallelism on a single server.
Single-machine streaming engines Trill [8] inspires
StreamBox’s state management with its columnar store
and bit-vector design. However, Trill’s punctuations are
generated by the engine itself in order to flush its in-
ternal batches, which limits parallelism. Furthermore,
Trill assumes ordered input records, which limits it ap-
plicability. StreamBox has neither of these limitations.
SABER [24] is a hybrid streaming engine for CPUs and
GPGPUs. Similar to StreamBox, it exploits data paral-
lelism with multithreading. However, SABER does not
support OOP. It must reorder execution results from con-
current workers, limiting its applicability and scalability.
Oracle CEP [31] exploits record parallelism by relaxing

record ordering. However, it lacks the notion of water-
marks and does not implement statefull OOP pipelines.
Distributed streaming engines Several systems process
large continuous streams using hundreds to thousands of
machines. Their designs often focus on addressing the
pressing concerns of a distributed environment, such as
fault tolerance [38, 32, 28], programming models [30, 3],
and API compatibility [36]. TimeStream [32] tracks data
dependence between transform’s input and output, but
uses it for failure recovery. StreamBox also tracks fine-
grained epoch dependences, but for minimizing exter-
nalization latency. StreamScope [28] handles OOP us-
ing watermark semantics, but it does not exploit OOP for
performance as does StreamBox. It instead implements
operator determinism based on holding and waiting for
watermarks. StreamBox is partially inspired by Google’s
dataflow model [3] and is an implementation of its OOP
programming model. However, to the best of our knowl-
edge and based on our experiments, the Apache Beam [5]
open-source implementation of Google dataflow does
not exploit epoch parallelism on a multicore machine.
Data analytics on a shared memory machine Some
data analytics engines propose to facilitate sequential
memory access [33, 25] and one exploits NUMA [39].
StreamBox’s bundles are similar to morsels in a rela-
tional query evaluator design [26], where evaluators pro-
cess data fragments (“morsels”) in batch and that are
likely allocated on local NUMA nodes. StreamBox fa-
vors low scheduling delay for stream processing. Eval-
uators are rescheduled after consuming each bundle, in-
stead of executing the entire pipeline for that bundle.

11 Conclusions

This paper presents the design of a stream processing en-
gine that harnesses the hardware parallelism and memory
hierarchy of modern multicore servers. We introduce a
novel data structure called cascading containers to track
dependences between epochs while at the same time pro-
cessing any available records in any epoch. Experimen-
tal results show StreamBox scales to a large number of
cores and achieves throughput on-par with distributed
engines on medium-size clusters. At the same time,
StreamBox delivers latencies in the tens of milliseconds,
which are 20× shorter than other large-scale streaming
engines. The key contribution of our work is a general-
ization of out-of-order record processing to out-of-order
epoch processing that maximizes parallelism while min-
imizing synchronization overheads.

Acknowledgments

This work was supported in part by NSF Award
#1619075 and by a Google Faculty Award. The authors

thank the anonymous reviewers and the paper shepherd,
Charlie Curtsinger, for their useful feedback.

References

[1] ABADI, D., CARNEY, D., CETINTEMEL, U.,
CHERNIACK, M., CONVEY, C., ERWIN, C.,
GALVEZ, E., HATOUN, M., MASKEY, A., RASIN,
A., ET AL. Aurora: a data stream management sys-
tem. In Proceedings of the 2003 ACM SIGMOD
international conference on Management of data
(2003), ACM, pp. 666–666.

[2] AKIDAU, T., BALIKOV, A., BEKIROĞLU, K.,
CHERNYAK, S., HABERMAN, J., LAX, R.,
MCVEETY, S., MILLS, D., NORDSTROM, P.,
AND WHITTLE, S. Millwheel: Fault-tolerant
stream processing at internet scale. Proc. VLDB
Endow. 6, 11 (Aug. 2013), 1033–1044.

[3] AKIDAU, T., BRADSHAW, R., CHAMBERS,
C., CHERNYAK, S., FERNÁNDEZ-MOCTEZUMA,
R. J., LAX, R., MCVEETY, S., MILLS, D.,
PERRY, F., SCHMIDT, E., ET AL. The dataflow
model: A practical approach to balancing cor-
rectness, latency, and cost in massive-scale, un-
bounded, out-of-order data processing. Proceed-
ings of the VLDB Endowment 8, 12 (2015), 1792–
1803.

[4] ALISTARH, D., KOPINSKY, J., LI, J., AND
SHAVIT, N. The spraylist: A scalable relaxed prior-
ity queue. SIGPLAN Not. 50, 8 (Jan. 2015), 11–20.

[5] APACHE. Beam. https://beam.apache.org/,
2017.

[6] BALKESEN, C., TEUBNER, J., ALONSO, G., AND
ÖZSU, M. T. Main-memory hash joins on multi-
core cpus: Tuning to the underlying hardware. In
Data Engineering (ICDE), 2013 IEEE 29th Inter-
national Conference on (2013), IEEE, pp. 362–373.

[7] CHANDRAMOULI, B., GOLDSTEIN, J., BAR-
NETT, M., DELINE, R., FISHER, D., PLATT,
J. C., TERWILLIGER, J. F., AND WERNSING, J.
Trill: A high-performance incremental query pro-
cessor for diverse analytics. Proceedings of the
VLDB Endowment 8, 4 (2014), 401–412.

[8] CHANDRAMOULI, B., GOLDSTEIN, J., BAR-
NETT, M., DELINE, R., FISHER, D., PLATT,
J. C., TERWILLIGER, J. F., AND WERNSING, J.
Trill: A high-performance incremental query pro-
cessor for diverse analytics. Proceedings of the
VLDB Endowment 8, 4 (2014), 401–412.

[9] CHANDRASEKARAN, S., COOPER, O., DESH-
PANDE, A., FRANKLIN, M. J., HELLERSTEIN,
J. M., HONG, W., KRISHNAMURTHY, S., MAD-
DEN, S. R., REISS, F., AND SHAH, M. A. Tele-
graphcq: continuous dataflow processing. In Pro-
ceedings of the 2003 ACM SIGMOD international
conference on Management of data (2003), ACM,
pp. 668–668.

[10] CHENG, Z., CAVERLEE, J., AND LEE, K. You are
where you tweet: a content-based approach to geo-
locating twitter users. In Proceedings of the 19th
ACM international conference on Information and
knowledge management (2010), ACM, pp. 759–
768.

[11] CRANOR, C., JOHNSON, T., SPATASCHEK, O.,
AND SHKAPENYUK, V. Gigascope: a stream
database for network applications. In Proceed-
ings of the 2003 ACM SIGMOD international con-
ference on Management of data (2003), ACM,
pp. 647–651.

[12] DAVID GOLDBLATT, DAVE WATSON, J. E. Je-
malloc memory allocator. http://http://

jemalloc.net/, 2017.

[13] DESROCHERS, C. moodycamel::concurrentqueue.
https://github.com/cameron314/

concurrentqueue, 2016.

[14] ESPERTECH. Esper. http://www.espertech.

com/esper/, 2017.

[15] ESPERTECH. Esper faq. http://www.

espertech.com/esper/faq_esper.php#

scaling, 2017.

[16] EUGENE KHARITONOV, P. S. Yan-
dex: Personalized web search chal-
lenge. https://www.kaggle.com/c/

yandex-personalized-web-search-challenge/

data, 2017.

[17] FACEBOOK. Folly. https:

//github.com/facebook/folly#

folly-facebook-open-source-library,
2017.

[18] GOYAL, M., FAN, B., LI, X., ANDERSEN, D. G.,
AND KAMINSKY, M. Libcuckoo. https://

github.com/efficient/libcuckoo, 2017.

[19] GUO, C., YUAN, L., XIANG, D., DANG, Y.,
HUANG, R., MALTZ, D., LIU, Z., WANG, V.,
PANG, B., CHEN, H., ET AL. Pingmesh: A large-
scale system for data center network latency mea-
surement and analysis. ACM SIGCOMM Computer
Communication Review 45, 4 (2015), 139–152.

https://beam.apache.org/
http://http://jemalloc.net/
http://http://jemalloc.net/
https://github.com/cameron314/concurrentqueue
https://github.com/cameron314/concurrentqueue
http://www.espertech.com/esper/
http://www.espertech.com/esper/
http://www.espertech.com/esper/faq_esper.php#scaling
http://www.espertech.com/esper/faq_esper.php#scaling
http://www.espertech.com/esper/faq_esper.php#scaling
https://www.kaggle.com/c/yandex-personalized-web-search-challenge/data
https://www.kaggle.com/c/yandex-personalized-web-search-challenge/data
https://www.kaggle.com/c/yandex-personalized-web-search-challenge/data
https://github.com/facebook/folly#folly-facebook-open-source-library
https://github.com/facebook/folly#folly-facebook-open-source-library
https://github.com/facebook/folly#folly-facebook-open-source-library
https://github.com/efficient/libcuckoo
https://github.com/efficient/libcuckoo

[20] GURTOVOYI, A., AND ABRAHAMSI, D. Boost
c++ libraries. http://www.boost.org/, 2017.

[21] HART, M. Free ebooks by project gutenberg.
http://www.gutenberg.org/wiki/Main_

Page, 2017.

[22] INTEL. Intel threading building blocks. https:

//software.intel.com/en-us/intel-tbb,
2017.

[23] INTEL. Scalable memory allocator. https:

//www.threadingbuildingblocks.org/

tutorial-intel-tbb-scalable-memory-allocator,
2017.

[24] KOLIOUSIS, A., WEIDLICH, M., CASTRO FER-
NANDEZ, R., WOLF, A. L., COSTA, P., AND
PIETZUCH, P. Saber: Window-based hybrid stream
processing for heterogeneous architectures. In Pro-
ceedings of the 2016 International Conference on
Management of Data (New York, NY, USA, 2016),
SIGMOD ’16, ACM, pp. 555–569.

[25] KYROLA, A., BLELLOCH, G., AND GUESTRIN,
C. Graphchi: Large-scale graph computation on
just a PC. In Proceedings of the 10th USENIX Con-
ference on Operating Systems Design and Imple-
mentation (Berkeley, CA, USA, 2012), OSDI’12,
USENIX Association, pp. 31–46.

[26] LEIS, V., BONCZ, P., KEMPER, A., AND NEU-
MANN, T. Morsel-driven parallelism: a numa-
aware query evaluation framework for the many-
core age. In Proceedings of the 2014 ACM SIG-
MOD international conference on Management of
data (2014), ACM, pp. 743–754.

[27] LI, J., TUFTE, K., SHKAPENYUK, V., PAPADI-
MOS, V., JOHNSON, T., AND MAIER, D. Out-
of-order processing: a new architecture for high-
performance stream systems. Proceedings of the
VLDB Endowment 1, 1 (2008), 274–288.

[28] LIN, W., QIAN, Z., XU, J., YANG, S., ZHOU, J.,
AND ZHOU, L. Streamscope: continuous reliable
distributed processing of big data streams. In Proc.
of NSDI (2016), pp. 439–454.

[29] MAIER, D., LI, J., TUCKER, P., TUFTE, K., AND
PAPADIMOS, V. Semantics of data streams and op-
erators. In International Conference on Database
Theory (2005), Springer, pp. 37–52.

[30] MURRAY, D. G., MCSHERRY, F., ISAACS, R.,
ISARD, M., BARHAM, P., AND ABADI, M. Na-
iad: A timely dataflow system. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating

Systems Principles (New York, NY, USA, 2013),
SOSP ’13, ACM, pp. 439–455.

[31] ORACLE. Stream explorer. http://bit.ly/

1L6tKz3, 2017.

[32] QIAN, Z., HE, Y., SU, C., WU, Z., ZHU, H.,
ZHANG, T., ZHOU, L., YU, Y., AND ZHANG, Z.
Timestream: Reliable stream computation in the
cloud. In Proceedings of the 8th ACM European
Conference on Computer Systems (New York, NY,
USA, 2013), EuroSys ’13, ACM, pp. 1–14.

[33] ROY, A., MIHAILOVIC, I., AND ZWAENEPOEL,
W. X-stream: Edge-centric graph processing using
streaming partitions. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems
Principles (New York, NY, USA, 2013), SOSP ’13,
ACM, pp. 472–488.

[34] STANLEY ZDONIK, MICHAEL STONEBRAKER,
M. C. Streambase systems. http://www.tibco.
com/products/tibco-streambase, 2017.

[35] TUCKER, P. A., MAIER, D., SHEARD, T., AND
FEGARAS, L. Exploiting punctuation semantics
in continuous data streams. IEEE Transactions on
Knowledge and Data Engineering 15, 3 (2003),
555–568.

[36] TWITTER. Heron. https://twitter.github.

io/heron/, 2017.

[37] WANG, L., ZHAN, J., LUO, C., ZHU, Y., YANG,
Q., HE, Y., GAO, W., JIA, Z., SHI, Y., ZHANG,
S., ET AL. Bigdatabench: A big data bench-
mark suite from internet services. In High Perfor-
mance Computer Architecture (HPCA), 2014 IEEE
20th International Symposium on (2014), IEEE,
pp. 488–499.

[38] ZAHARIA, M., DAS, T., LI, H., HUNTER, T.,
SHENKER, S., AND STOICA, I. Discretized
streams: Fault-tolerant streaming computation at
scale. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles
(2013), ACM, pp. 423–438.

[39] ZHANG, K., CHEN, R., AND CHEN, H. Numa-
aware graph-structured analytics. SIGPLAN Not.
50, 8 (Jan. 2015), 183–193.

http://www.boost.org/
http://www.gutenberg.org/wiki/Main_Page
http://www.gutenberg.org/wiki/Main_Page
https://software.intel.com/en-us/intel-tbb
https://software.intel.com/en-us/intel-tbb
https://www.threadingbuildingblocks.org/tutorial-intel-tbb-scalable-memory-allocator
https://www.threadingbuildingblocks.org/tutorial-intel-tbb-scalable-memory-allocator
https://www.threadingbuildingblocks.org/tutorial-intel-tbb-scalable-memory-allocator
http://bit.ly/1L6tKz3
http://bit.ly/1L6tKz3
http://www.tibco.com/products/tibco-streambase
http://www.tibco.com/products/tibco-streambase
https://twitter.github.io/heron/
https://twitter.github.io/heron/

	Introduction
	Stream model and background
	Design goals and criteria
	StreamBox overview
	Cascading containers
	Container implementation
	Single-input transforms
	Multi-input transforms
	Synchronized access to containers

	Pipeline scheduling
	Pipeline state management
	Bundles
	Transform Internal State

	Implementation
	Evaluation
	Throughput and Scalability
	Validation of key design features

	Related work
	Conclusions

